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Hailer, M. Katie Ph.D., May 2006 Chemistry

Damage, Recognition, and Repair of Oxidized Guanine Lesions Induced by Chromium 
Exposure

Chairperson: Kent Sugden

Hexavalent chromium is a known human respiratory carcinogen, but the induction of 
cancer by Cr(VI) is not fully understood. Cellular exposure to Cr(VI) has been shown to 
cause a wide array of damage including DNA crosslinks, abasic sites and oxidized 
nucleic acid bases. Our group focuses on the oxidation of DNA at the nucleobase 
guanine. One well studied oxidized guanine lesions is 7,8-dihydro-8-oxoguanine (8- 
oxoG). This oxidized base is thought to be a major lesion formed in DNA by oxidative 
attack. This work will illustrate the potential for disruption in protein-DNA interactions 
with the insertion of an 8-oxoG lesion in the DNA consensus binding site for the 
transcription factor, NF-kB. Additionally, data shows that changing the DNA-protein 
interactions can lead to shielding of the 8-oxoG lesion from repair. Also, studies have 
shown that 8-oxoG is prone to further oxidation. High valent metals, such as Cr(V), have 
been shown in vitro to readily oxidize 8-oxoG to form guanidinohydantoin (Gh) and 
spiroiminodihydantoin (Sp). Previous literature shows that these oxidative lesions are 
repaired by the base excision repair (BER) system that involves the E. coli DNA 
glycosylases Fpg, Nei, and Nth. Previous to this work, no known mammalian 
homologues showed affinity to the Sp and Gh lesions. This dissertation will demonstrate 
that the mammalian glycoslyases, NEIL1 and NEIL2, display a high affinity for the 
recognition and cleavage of DNA containing the Gh and Sp lesions. The Sp formation in 
DNA will further be proven by reacting dsDNA with Cr(VI) and ascorbate and 
determining Sp lesion formation by PAGE sequencing and LC-ESI-MS detection. These 
findings were supported by studying growth inhibition and oxidized guanine lesion 
formation in BER deficient E. coli strains following chromate exposure. The only BER 
deficient strain to show growth inhibition by chromate exposure was the Nei mutant 
strain. HPLC/MS analysis showed the Nei mutant strain accumulated the Sp lesion in 
genomic DNA at levels 20-fold greater than its wild type counterpart. This work has 
mechanistic and toxicological implications for how chromate serves as an initiator of 
carcinogenesis and suggests a role for repair enzymes that may combat the carcinogenic 
potential of chromate.
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Chapter 1: The Biological Role of Chromate as a Human Carcinogen

1.1 Introduction to the Chemistry of Chromium.

The metal chromium exists in a paradoxical state. Chromium has been identified 

as an essential micronutrient1 and as a chemical carcinogen.2 Its role, either positive or 

negative, depends upon oxidation state and solubility of the compound. A trivalent 

chromium complex has been reported to be essential for glucose metabolism3, and 

bronchogenic carcinomas have been associated with the inhalation of slightly soluble and 

insoluble hexavalent chromium compounds.4 Tissue damage, lesions of the skin and 

respiratory tract, as well as cell mediated allergic reactions caused by exposure to 

hexavalent chromium compounds, are well documented.5 In general, compounds of 

trivalent chromium are less toxic than those of hexavalent chromium.

Chromium is ubiquitous in the environment as it is the seventh most abundant 

element in the earth’s crust. Weathering is responsible for the natural concentrations of 

chromium in the ground and surface waters, soils, and air. In addition to this natural 

release of chromium into the environment, a somewhat larger contribution to the total 

concentration of chromium in the environment comes from the release by anthropogenic 

sources. Annual domestic processing of chromium is in excess of 500,000 tons, 

approximately 60% of which is used in the production of a variety of stainless steels and 

other alloys.6 In addition to stainless steel production, chromium is used in the 

production of refractory materials, as a rust inhibitor in factory cooling towers, and a 

number of end-use consumer products, such as replacement hip joints and applied 

cosmetics.

1
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» • 7 8 0 1AEpidemiological studies in the United States ’ and in the United Kingdom ’ 

from half a century ago confirmed even earlier German11 findings on the excess risk of 

lung cancer associated with exposure to some hexavalent chromium compounds in a 

variety of occupational and industrial settings, such as chromate producing industries, the 

manufacture and use of chromium pigments, chromium plating, and stainless steel 

welding. Hexavalent chromium compounds have also been identified as powerful dermal 

irritants, with ulceration and perforation of the nasal septum12 and allergic contact 

dermatitis occurring in workers exposed to chromate compounds in industrial settings. 

The International Agency for Research in Cancer (IARC) has classified hexavalent 

chromium compounds as carcinogenic to humans (group l)13, and daily time-weighted 

exposure limits to chromium in the occupation environment have been set by the U.S. 

Occupational Safety and Health Administration (OSHA).14 These exposure limits

1 c
changed in 2004 from 52 micrograms per cubic meter of air to 1 microgram/m .

Due to the high level of occupational and industrial use, environmental and 

economical disposal of chromium waste has become an ever increasing issue. Kilau and 

Shah16 estimated that nearly 100,000 tons of chromium is discarded annually in the slag 

from stainless steel and chrome alloy production. Land-fill and industrial discharges into 

municipal sewers has lead to a high level of environmental exposure of chromium 

compounds to the general population. Due to the ubiquitous nature of chromium in the 

environment, understanding the biological fate of this metal is of particular importance 

and concern to the human population. This dissertation will work to illustrate some of 

the novel findings that may help to explain the carcinogenic nature of this metal in 

biological systems.

2
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1.2 Chromium Toxicity

Chromate, Cr(VI), has been studied for over 100 years and there is strong 

epidemiological evidence that it is a human respiratory carcinogen.17 Although there is 

good evidence for the induction of cancer, little is known about the mechanism of how 

chromium damages DNA. When cellular systems are treated with chromate, a large 

number of different biological lesions have been observed. Cr(VI) has been shown to 

produce lipid peroxidation products, DNA inter- and intra-strand adducts, DNA-protein 

crosslinks, DNA strand breaks, abasic sites, and oxidized nucleic acid bases. This has 

made it difficult to develop rational mechanisms to explain the induction of cancer.

Another factor that makes the development of a mechanism difficult is the 

multiple species generated during intracellular metabolism of the metal complex. The 

chromate ion [CrOJ2', the dominant form of Cr(VI) in neutral aqueous solutions (at 

physiological pH) can cross cellular membranes via the surface anion transport system 

(SO42' and HPO42’ channels) and is biologically active (Fig. 1.1).18-20 Once internalized, 

Cr(VI) is reduced to the trivalent oxidation state, Cr(III). During this reduction process, 

high valent metastable oxidation states of +5 and +4 are formed.21 Also, radicals of 

carbon, sulfur, and oxygen have been shown to form in vitro when Cr(VI) is reduced.22 

These radical species are confounding secondary DNA damaging agents. Both the high- 

valent chromium intermediates and free radicals have the potential to cause oxidative 

DNA damage promoted by Cr(VI).

3
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u -  o -
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Hydrogen Chromate Chromate

O

- O ^ E ^ O H  - O ^ l ^ O H
O- O-

Sulfate Phosphate

Figure 1.1: Cellular transport of chromate is due to the structural similarity to sulfate and 
phosphate.

The reduction of Cr(VI) to Cr(III) intracellularly is primarily nonenzymatic and 

promoted by endogenous reductants such as ascorbate (vitamin C) and the nonprotein 

thiols of cysteine and glutathione.23,24 Ascorbate has been shown to be a kinetically 

efficient reductant of Cr(VI) 24 and has been identified as the major reducing component 

of Cr(VI) in the rat liver and kidney.25 The nature of the oxidizing intermediates from 

Cr(VI) reduction by ascorbate is dependent on the Cr(VI)/ascorbate ratios with formation 

of Cr(IV) predominating in reactions with excess ascorbate.22 It has been shown that 

many types of DNA damage and markers of oxidative stress can also be formed through 

a direct oxidation mechanism involving the high-valent intermediates of chromium such 

as Cr(V) and Cr(IV). The DNA damage that occurs during this reduction process

4
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remains in debate, specifically with regard to the type of lesion(s) that is being formed 

and the mechanism of its formation.

High-valent chromium complexes designed to model intracellular chromate 

reduction products have primarily used oxygen-ligated anionic complexes such as the 

readily synthesized Cr(V) complex, 2-ethyl-2-hydroxybutanoic acid or Cr(V)-EHBA. 

This complex was first shown to cause oxidative damage by relaxation of supercoiled

Oftplasmid DNA. Subsequently, a specific oxidative mechanism involving abstraction of 

the the C-4’ hydrogen atom of the deoxyribose moiety of nucleotides and DNA has been

97 90identified for this complex. ' Other model Cr(V) complexes have also shown a 

preference for oxidation occurring at the deoxyribose sugar. However, the first high- 

valent chromium complex to show convincing interactions with the DNA nucleobase 

guanine was Cr(V)-Salen (Fig.1.2).31 The Cr(V) complex, N,N- 

ethylenebis(salicylideneanimato)oxochromium(V), or Cr(V)-Salen, was chosen as a 

model complex for study with DNA since its cationic charge should allow good 

electrostatic interactions between the metal complex and the anionic DNA substrate.

This transition metal complex has been used to mimic chromium-peptide complexes that 

may form upon intracellular reduction of Cr(VI) by virtue of the mixed nitrogen and 

oxygen ligand chelation.

5
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Cr(V)-Salen

+

Cr(V)-EHBA

Figure 1.2: Structure of model Cr(V) complexes used in DNA oxidation.

1.3 The Formation of Oxidized Guanine Products:

The nucleobase guanine is considered to be the most readily oxidized base (Table 

1.1). Significant evidence exists for the interaction of Cr(VI) with guanine nucleotides in 

DNA, including enhanced chromium association with high-G-content DNA32, and
0<2 O A

oxidative damage at guanine sites. ’ This G-specific interaction is interesting since it 

has been shown that guanine modifications represent the major mutations leading to p53- 

linked cancers.35 There is also evidence that guanines are the sites for reaction of 

chromium through both oxidative and binding processes.32

Table 1.1: Reduction potentials of nucleosides, DNA sequences, and 

chromium (VI) to chromium (III)

Species 
(pH = 7)

E° (V vs. 
NHE)ab

Sequence 
(pH = 7)

E° (V vs. 
NHE)C Cr(VI)/Cr(lll)

E° (V vs. 
NHE)d

G 1.29 GGG 0.64 pH = 0 1.33
A 1.42 GG 0.82 pH = 7 0.4
C 1.6 GA 1 pH = 14 -0.12
T 1.7 (8-oxoG)G 0.08
8-oxoG 0.74 G(8-oxoG) 0.18

"Stevenken et a t, J. Am. Chem. Soc. 1997,119, 617-618. 
'  Saito et. a t, J. Am. Chem. Soc. 1995,117, 6406

b Steenken et. a t,  J. Am. Chem. Soc. 2000,122, 2373-2374 
d Connett et. a t, Structure and Binding, 1983, 54, 93-124
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Guanine, having the lowest redox potential of the four DNA bases, is the most 

easily oxidized base. When Cr(VI) is reacted with DNA, the oxidized guanine base 8- 

oxoguanine (8-oxoG) has been postulated to be the major product.36 8-oxoG has been 

used previously as a biomarker in a number of disease states, including cancer and 

aging.37 This type of lesion has been shown to cause a number of aberrant cellular 

effects, including mutation, cell transformation, and changes in gene transcription.38’41 It 

has been estimated that oxidative lesions such as 8-oxoG occur at a frequency of -1000 

base pairs per cell per day.39 On the basis of oxidation potentials, DNA sequences that 

contain a high guanine content or consecutive runs of G’s should be particularly prone to 

oxidative modification (Table 1.1). Given this tendency toward oxidative modification of 

high-guanine content DNA, it is surprising to note that a number of transcription factor 

regulatory elements driving redox sensitive gene expression contain such consecutive 

runs of guanines within their consensus transcription factor binding sites. The initial 

binding of DNA by transcription factors is required for recruitment of the protein 

complex needed to activate transcription. The assembly of a transcription factor complex 

is the last point where control can be exerted over gene transcription so, it is evident that 

the binding affinity of transcription factor proteins to their cognate sequences must play 

an important role in the regulation of all non-constitutively expressed genes.

Table 1.2 shows the DNA consensus binding sites for several transcription factors 

as well as the p53 tumor suppressor gene. All of the DNA binding sites contain a run of 

at least three purines in specific for protein binding. In the case of Sp-1 and NF-kB, a run 

of four guanines are present within, or overlapping, their binding sequence. A 

fundamental question is why a series of transcription factors, many of which are sensitive

7
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to oxidative stress, should have regulatory elements that are prone towards oxidation. It 

is our hypothesis that there exists a level of transcriptional control within the genome 

whereby formation of oxidative base lesions can modulate gene expression. We are 

particularly interested in the oxidative modification of guanines within regulatory 

elements since guanine’s tendency towards oxidation is sequence dependent, it occurs 

with high frequency in regulatory elements, and its oxidative products are well defined in 

regards to reaction with redox metals. Formation of oxidized guanine lesions within the 

DNA consensus binding site is predicted to change hydrogen bond donor-acceptor 

patterns that would alter recognition by the transcription factor protein.42 These oxidative 

modifications may also induce structural changes within the DNA such as base flipping 

43, bending, or kinking.

Table 1.2: DNA Consensus Binding Sequence for Select Transcription Factors.

Protein Oligonucleotide Sequence (Top Strand Only)3

Sp-1 5 ’ - ATTCGATCGGGGCGGGCGAG-3 ’

API 5 ’ -CGCTTGA7GAGTCAGCCGGAA-3 ’

AP2 5 ’ -GATCG AACTGACCGCCCGCGGCCCGT-3 ’

NF-kB 5 ’-AGTTGAGGGGAC77TCCCAGGC-3 ’

p53 5 ’ - AT A ATT GGGCAA GTCTAGGAA-3 ’

a = bold and italics sequence indicates the transcription factor binding sequence

8
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However, 8-oxoG is thermodynamically labile to further oxidation and is seldom 

observed in in-vitro DNA systems reacted with chromium. While 8-oxoG is considered 

an intermediate in the overall oxidation process and may serve as a genomic “hot spot” 

for further oxidative damage, the relevant lesions are thought to be further oxidized 

products derived from 8-oxoG. Over 50 different base products resulting from the further 

oxidation of 8-oxoG have recently been identified. Included in this group are 

imidazolone (Iz)44, oxazalone (Oa)45, guanidinohydantoin, (Gh) 46, and 

spiroiminodihydantoin, (Sp) 47 (Figure 1.3). Based on this observation, modified DNA 

containing an 8-oxoG nucleotide at a single point within the sequence will be the starting 

point for many of our reactions.

The Cr(V)-Salen complex shows specificity of oxidation toward the nucleic acid 

base guanine. The two oxidative products identified from Cr(V)-Salen oxidation of 8- 

oxoG both in the nucleoside and the oligonucleotide were assigned as 

guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) on the basis of characteristic
'i i

mass changes . These data suggest that oxidation of nucleic acid bases may occur from 

reaction with high-valent chromium intermediates generated from intracellular reduction 

of Cr(VI). Also, this work demonstrates that biomarkers such as Sp and Gh, and not just 

8-oxoG, should be analyzed for the assessment of Cr(VI) exposure and carcinogenicity.

Work on Gh and Sp has shown them to be highly mutagenic. Both lesions 

promote misincorporation of adenine opposite the oxidized base leading to G:C~^ T:A 

transversions at a rate greater than that with 8-oxoG alone48. Also, Sp and Gh have been 

observed to produce significant levels of G:C -> C:G transversion mutations and 

polymerase arrest.31,46’48‘50 Importantly, these G:C-> T:A and G:C -> C:G transversion

9
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mutations are the primary mutations observed in human lung tumors from chromate- 

exposed workers and in shuttle vector replication assays in Cr(VI)-treated mammalian 

cells.51’52
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Figure 1.3: Examples of some of the further oxidized lesions of guanine. R = 
the connection to the deoxyribose sugar backbone.
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For oxidized guanine lesions to have a significant impact upon gene transcription, 

they must be resistant to recognition and repair from endogenous repair enzymes on a 

reasonable cellular time scale. A variety of enzymes are given the daunting task of 

maintaining the integrity of DNA and many DNA repair mechanisms have been 

extensively characterized53. Although a number of different repair pathways have been 

uncovered, these pathways are often highly conserved between bacteria and humans, 

which illustrates the importance in maintaining the integrity of DNA. There are 

increasing numbers of examples linking the importance of DNA repair fidelity with the 

prevention of cancer.

Damage to individual DNA bases are usually repaired by the base-excision repair 

(BER) pathway.54,55 The initial enzymes involved in the base-excision pathway are DNA 

glycosylase enzymes, which recognize a variety of modified or mismatched bases and 

catalyze cleavage of the N-glycosidic bond to release the damaged or incorrect base from 

the deoxyribose ring.53 If oxidized guanine lesions are present in promoter elements and 

affect gene transcription, such repair would serve to switch the response element, along 

with any transcriptional effects, back to their “normal” levels.

On the basis of these results, we have proposed that the further oxidized products 

of guanine, Sp and Gh, are equally if not more common in Cr(VI) oxidation reactions 

with DNA than 8-oxoG itself and, being more mutagenic, may play a primary role in 

chromium-induced carcinogenesis. Until this point, these lesions had yet to be observed 

by the direct oxidation of guanine in duplex DNA with any carcinogenic metal. Also, 

these lesions will be studied for their biological relevance by looking at the recognition 

and repair of these oxidized guanine lesions by the base excision repair glycosylases.
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1.4 The Recognition and Repair of Oxidized Guanine Lesions

Aerobic organisms are constantly bombarded by reactive oxygen species (ROS). 

Oxidizing agents can be a normal product of a cellular system, as in the case of metabolic 

intermediates involved in the electron cascade in mitochondria, but they can also be 

endogenously induced in cells experiencing oxidative stress or exogenously introduced 

by environmental exposure to transition metals, oxidants, and free radicals. Oxidative 

damage to DNA has been shown to be a relevant causative agent in aging, 

carcinogenesis, and neurological disorders. ’ Oxidative DNA damage results in strand 

breaks, DNA-protein cross-links, and base lesions. All of these examples of damage
en

require the action of DNA repair pathways to maintain the integrity of the genome.

A variety of enzymes are given the task of maintaining the integrity of DNA and 

many DNA repair mechanisms have been extensively characterized. Although a number 

of different repair pathways have been uncovered, these pathways are often highly 

conserved between bacteria and humans. There are increasing numbers of examples 

linking the importance of DNA repair in the prevention of cancer. For example, the 

relationship between faulty nucleotide excision repair (NER) and the cancer-prone 

disorder, Xeroderma pigmentosum, has been well-documented.54,58 In another repair 

pathway, the base excision repair pathway, a possible link to cancer has been suggested 

by the observation that the human gene hOGGl, which encodes for a repair enzyme 

involved in the repair of oxidatively damaged guanine residues, is located in a region of 

the chromosome often deleted in lung cancers.55,59

Damage to individual DNA bases is usually repaired by the base-excision repair 

pathway.54,55 The initial enzymes involved in the base-excision pathway are DNA

12
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glycosylase enzymes, which are specific for a variety of modified or mismatched bases.53

Many glycosylases also have lyase activity, which is a (3-elimination reaction to cause 

strand scission after base removal. Subsequent action of apurinic-apyrimidinic (AP) 

endonucleases and 3’- and 5’-phosphodiesterases remove the remaining sugar fragments 

to produce a single nucleotide gap. This gap is filled by a DNA polymerase which adds 

the correct nucleotide. In the last step, the phosphodiester backbone is sealed by a DNA 

ligase (Figure 1.4).60

A U

Figure 1.4: Schematic showing the steps in the base excision repair pathway. 
From: David, S.S. and Williams, S.D. 1998, Chemical Reviews 98, 1221-1261.

DNA Polymeras* 
 ►
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The BER pathway is known to be critical for the health of a cellular system and is 

highly conserved from bacteria to humans. DNA glycosylases have been isolated from 

numerous sources including bacteria, yeast, and mammals. Much of the initial work in 

identifying and characterizing members of the BER pathway was performed with bacteria 

and this work has been critical for the identification of eukaryotic homologues of these 

enzymes.

There have been over 50 base lesions identified resulting from DNA oxidation.61 

The most common guanine oxidative lesion focused on has been 8-oxoG, which is 

commonly used as a biomarker of oxidative DNA damage in the cell.38,61 When 8-oxoG 

is present in DNA during replication, insertion of A or C opposite the 8-oxoG occurs,
rry

depending on the specific polymerase that is involved. ’ This insertion of an adenine 

during replication has been shown to lead to high levels of G:C -> T:A transversion
/ r i  z c

mutations in bacterial and mammalian cells. ' However, several repair enzymes have 

been identified that are specific for recognizing and cleaving the 8-oxoG lesion. In 

Escherichia coli (E. coli), two base excision repair glycosylases 53, Fpg (MutM) and 

MutY, catalyze the repair of 8-oxoG lesions. Fpg is responsible for catalyzing the 

removal of 8-oxoG when paired opposite a cytosine. MutY is considered a second line of 

defense by removing the mismatched adenine from an 8-oxoG:A pair, giving the cell 

another chance to remove the aberrant 8-oxoG lesion by Fpg. MutT is the third enzyme 

that is specific for 8-oxoG removal. While MutT is not a glycosylase, but rather a 

phosphatase, this enzyme prevents the incorporation of 8-oxoG into DNA by cleansing 

the dNTP pool of 8-oxoG. It does this by catalyzing the hydrolysis of d(8-oxoGTP) to 

d(8-oxoGMP) which effectively removes 8-oxoG from the precursor pool.66
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An important and interesting feature of 8-oxoG is its low reduction potential and

fnability to act as a “hot spot” towards further oxidation and susceptiblity to oxidation by 

a variety of cellular oxidants. The formation of further oxidized lesions from 8-oxoG 

such as Sp and Gh, is an important aspect of cellular toxicity and mutagenicity that needs 

to be studied in respect to the recognition and repair of these lesions by base excision 

repair enzymes. The oxidized lesions Sp and Gh present a number of hydrogen-bonding 

opportunities for base (mis)pairing. The most mutagenic lesion will be the one whose 

high frequency of formation, low fidelity during replication, and high error rate from
zro

DNA repair activity combine to give the greatest mutation rate. In this sense, Sp and 

Gh are of interest in order to characterize the biochemistry of oxidized lesions in DNA. 

Not only have the Sp and Gh lesions been shown to induce G T mutations (Figure 

1.5), but they also produce significant levels of G C transversion mutations as well.69

,NH

NH

N

<r
/

R
N O  I Syn-Orientation

A : Sp
^  T Transversion

NH

HN

N

<r
/

R

Syn-Orientation

N
A : Gh

T Transversion

Figure 1.5: Example of Sp and Gh mispairing with adenine in duplex DNA 
and potentially leading to a transversion mutation.
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These further oxidized lesions of guanine, Sp and Gh, are both recognized and

zo
cleaved by the base excision glycosylase MutM (Fpg). Besides MutM, two other DNA 

glycosylases/AP lyases exist in bacterial systems that are specific for oxidative damage, 

namely Nth and Nei. Nth, discovered on the basis of it endonucleolytic activity on X-ray 

and heavily UV-irradiated DNA 70’71, removes primarily oxidized pyrimidines. Nei, 

which is structurally homologous to MutM but not to Nth, was identified as a second 

pyrimidine-specific glycosylase/AP lysase.72 More recently it has been shown to possess 

significant oxidative guanine glycosylase activity , with specific recognition and 

cleavage of not only 8-oxoG but also Sp and Gh, when opposite adenine, cytosine or 

guanine.74

Table 1.3: Escherichia coli BER enzymes and substrate specificity

BER Glycosylase Lesions Excised from DNA

MutM (Fpg)
MutY
Nei
Nth

8oxoG:C, Sp:C, Gh:C, 8oxoG:G, Sp.G, Gh:G.
8oxoG:A, G:A.
Sp:A, Gh:A, 8oxoG:C, Sp:C, Gh:C, 8oxoG:G, Sp:G, Gh:G. 
Sp.G, low affinity for Sp:C, Gh:G, Gh:C.

The evolutionary conservation of BER enzymes from bacteria to mammals 75,76 

suggests the importance of BER for life and has enabled the identification of various 

mammalian homologs through database searches using the nucleotide sequences 

encoding well characterized E. coli and yeast enzymes. Three mammalian genes for 

oxidative DNA repair glycosylases, OGGI, MYH, and NTH1, have been identified in
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this way.77 While these three mammalian genes are specific for some oxidative DNA 

lesions, none of these glycosylases have shown any specificity for the further oxidized 

lesions of guanine, Sp and Gh. This lack of glycosylase specificity lead us to study a set 

of newly identified mammalian glycosylases, NEIL1 and NEIL2, that are homologous to 

the E. coli BER enzyme Nei.

There were many unanswered questions relating to chromate carcinogenicity 

previous to this research. While there is still much to discover, this body of work will 

illustrate a number of important findings. First, the ability to potentially modify gene 

transcription will be illustrated by studying the binding affinity of the p50 subunit of the 

NF-kB transcription factor when guanine has been oxidized to 8-oxoG at sites critical for 

protein recognition. The impact of this change in binding affinity will also be assessed 

by determining if these lesions are shielded from repair by BER enzymes due to the 

changes in transcription factor binding. Also, evidence will be presented to show that the 

formation of the further oxidized lesions Sp and Gh can occur by the direct oxidation of 

Cr(VI) and the reductant ascorbate in duplex DNA. Not only can these lesions be formed 

in duplex DNA by chromate exposure, but these lesions are recognized and cleaved by 

the newly identified mammalian BER glycosylases, NEIL1 and NEIL2, in single and 

double stranded DNA. To further support these findings, growth inhibition studies were 

conducted in a variety of BER deficient E. coli strains undergoing chromate exposure. 

The genomic DNA was extracted and tested for oxidative lesion formation in 8-oxoG and 

Nei mutant E. coli strains after this chromate exposure. This work demonstrates the 

significant formation of the Sp lesion in a cellular system after chromate exposure which 

is the first study to identify this further oxidized lesion in a cellular system. Taken
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together, this work has significant mechanistic and toxicological implications for the 

carcinogenicity of this metal in cellular systems and suggests a role for specific repair 

enzymes in the process of working to prevent the induction of cancer.

1.5 References

1. Mertz, W. Chromium occurrence and function in biological systems. 
Physiological Reviews 49, 163-239 (1969).

2. Lehmann, K.B. 1st Grund zu einer besonderen Beunruhigung wegen des 
Auftretens von Lungenkrebs bei Chromatarbeitem vorhanden? Zentralblat fiir 
Gewerbe-Hygeine und Unfallverhiitung 19, 168 (1932).

3. Mertz, W. Biological role of chromium. Federation Proceedings 26, 186-193 
(1967).

4. (U.S. Department of Health and Human Services, Public Health Service, National 
Institute of Environmental Health Sciences, Research Triangle Park, NC, 1991).

5. Samitz, M.H. Some dermatologic aspects of the chromate problem. Archives of 
Industrial Health 11, 361-367 (1955).

6 . Katz, S., A. and Salem, H. The Biological and Environmental Chemistry of 
Chromium (VCH Publishers, Inc, New York, New York, 1994).

7. Baetjer, A.M. Pulmonary carcinoma in chromate workers. A review of 
theliterature and report of cases. Archives of Industrial Hygeine and Occupational 
Medicine 2,487-504 (1950).

8 . Baetjer, A.M. Pulmonary carcinoma in chromate workers. II. Incidence on basis 
of hospital records. Archives of Industrial Hygeine and Occupational Medicine 2, 
505-516(1950).

9. Bidstrup, P.L. Carcinoma of the lung in chromate workers. British Journal of 
Industrial Medicine 8 , 302-305 (1951).

10. Bidstrup, P.L. and Case, R.A.M. Carcinoma in the lung of workmen in the 
bichromate-producing industry in Great Britain. British Journal of Industrial 
Medicine 13, 260-264 (1956).

11. Pfeil, R. Lungentumoren als Berufskrankung in Chromatbetrieben. Deutsche 
Medische Wochenschrifte 61, 1197-1202 (1935).

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

12. MacKenzie, J.M. Some observations of the toxic effects of chrome on the nose, 
throat, and ear. Journal of the American Medical Assocation 3, 601-603 (1884).

13. I ARC monograph on the evaluation of carcinogenic risk to humans. Chromium, 
nickel and welding (IARC, Lyon, France, 1990).

14. (U.S. Department of Labor, Occupational Safety and Health Administration, 
Washington, DC, 1989).

15. Weiss, R. in The Washington Post, Chromium Evidence Buried, Report Says 
(Washington, D.C., 2006).

16. Kilau, H.W. and Shah, I.D. in Hazardous and Industrial Waste Management and 
Testing (eds. Jackson, L. P., Rohlik, A. R. andConway, R. A.) 171-192 (American 
Society for Testing and Materials, Philadelphia, 1984).

17. Hayes, R.B. Biological and Environmental Aspects of Chromium (ed. Langard,
S.) (Elsevier Biomedical Press, Amsterdam, 1982).

18. Connett, P.H. and Wetterhahn, K.E. Metabolism of the carcinogen chromate by 
cellular constituents. Structure and Bonding 54, 93-124 (1983).

19. Cohen, M.D., Kargacin, B., Klein, C.B. and Costa, M. Critical Review of 
Toxicology 23, 255-281 (1983).

20. Steams, D. and Wetterhahn, K.E. Cytotoxic, Mutagenic, and Carcinogenic 
Potential of Heavy Metals Including Metals Related to Human Environment, The 
Mechanisms of Metal Carcinogenicity. Chromium (VI) induced Genotoxicity; 
Direct and Indirect Pathways (ed. Hadjiliadis, N.) (Kluwer Academic, 1997).

21. Sugden, K.D. and Steams, D.M. The role of chomium(V) in the mechanism of 
chromate-induced oxidative DNA damage and cancer. Journal of Environmental 
Pathology, Toxicology and Oncology 19, 215-230 (2000).

22. Steams, D.M. and Wetterhahn, K.E. Reaction of chromium(VI) with ascorbate 
produces chromium(V), chromium(IV),and carbon-based radicals. Chemical 
Research in Toxicology 7, 219-230 (1994).

23. Wiegand, H.J., Ottenwalder, H. and Bolt, H.M. The reduction of chromium(VI) to 
chromium(III) by glutathione: an intracellular redox pathway in the metabolism of 
the carcinogen chromate. Toxicology 33, 341-348 (1984).

24. Connett, P.H. and Wetterhahn, K.E. In vitro reaction of the carcinogen chromate 
with cellular thiols and carboxylic acids. Journal of the American Chemical 
Society 107,4282-4288 (1985).

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

25. Standeven, A.M. and Wetterhahn, K.E. Ascorbate is the principal reductant of 
chromium(VI) in rat liver and kidney ultrafiltrates. Carcinogenesis 12, 1733-1737 
(1991).

26. Farrell, R.P., Judd, R.J., Lay, P.A., Dixon, N.E., Baker, R.S.U. and Bonin, A.M. 
Chromium(V)-induced cleavage of DNA: Are chromium(V) complexes the 
active carcinogens in chromium(VI)-induced cancers? Chemical Research in 
Toxicology 2, 227-229 (1989).

27. Sugden, K.D. and Wetterhahn, K.E. Identification of the oxidized products 
formed upon reaction of chromium(V) with thymidine nucleotides. Journal of the 
American Chemical Society 118, 10811-10818 (1996).

28. Sugden, K.D. and Wetterhahn, K.E. Direct and hydrogen peroxide-induced 
chromium (V) oxidation of deoxyribose in single-stranded and double-stranded 
calf thymus DNA. Chemical Research in Toxicology 10, 1397-1406 (1997).

29. Sugden, K.D. Formation of modified cleavage termini from the reaction of 
chromium(V) with DNA. Journal of Inorganic Biochemistry 77, 177-183 (1999).

30. Bose, R.N., Fonkeng, B.S., Moghaddas, S. and Stroup, D. Mechanisms of DNA 
damage by chromium(V) carcinogens. Nucleic Acids Research 26, 1588-1596 
(1998).

31. Sugden, K.D., Campo, C.K. and Martin, B.D. Direct oxidation of guanine and 
7,8-dihyrdro-8-oxoguanine in DNA by a high-valent chromium complex: A 
possible mechanism for chromate genotoxicity. Chemical Research in Toxicology 
14, 1315-1322 (2001).

32. Tsapakos, M.J. and Wetterhahn, K.E. The interaction of chromium with nucleic 
acids. Chemico-Biological Interactions 46, 265-277 (1983).

33. Kawanishi, S., Inoue, S. and Sano, S. Mechanism of DNA cleavage induced by 
sodium chromate(VI) in the presence of hydrogen peroxide. Journal of Biological 
Chemistry 261, 5952-5958 (1986).

34. Shi, X., Mao, Y., Knapton, A.D., Ding, M., Rojanasakul, Y., Gannett, P.M.,
Dalai, N.S. and Liu, K. Reaction of Cr(VI) with ascorbate and hydrogen peroxide 
generates hydroxyl radicals and causes DNA damage: role of Cr(IV)-mediated 
Fenton-like reaction. Carcinogenesis 15, 2475-2478 (1994).

35. Hemandez-Boussard, T.M. and Hainaut, P. A specific spectrum of p53 mutations 
in lung cancer from smokers: Review of mutations compiled in the I ARC p53 
database. Environmental Health Perspectives 106, 265-277 (1998).

36. Misra, M., Alcedo, J. and Wetterhahn, K.E. Two pathways for chromium(VI)- 
induced DNA damage in 14 day chick embryos: Cr-DNA binding in liver and 8- 
oxo-2'-deoxyguanosine in red blood cells. Carcinogenesis 15, 2911-2917 (1994).

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

37. Hallwell, B. and Gutteridge, J.M.C. Free Radicals in Biology and Medicine 
(Clarendon, Oxford, U.K., 1989).

38. Beckman, K.B. and Ames, K.B. Oxidative decay of DNA. Journal of Biological 
Chemistry 272, 19633-19636 (1997).

39. Ames, B.N., Shigenaga, M.K. and Hagen, T.M. Oxidants, antioxidants and the 
degenerative disease of aging. Proceedings of the National Academy of Sciences, 
U.S.A 90, 7915-7922 (1993).

40. Kasai, H. and Nishimura, S. in Oxidative Stress: Oxidants and Antioxidants (ed. 
Sies, H.) 99-116 (Academic Press, London, 1991).

41. Ames, B.N. and Saul, R.L. Oxidative DNA damage, cancer and aging. Annals of 
Internal Medicine 107, 526-545 (1987).

42. Lipscomb, L.A., Peek, M.E., Momingstar, M.L., Verghis, S.M., Miller, E.M., 
Rich, A., Essigmann, J.M. and Williams, S.D. X-ray structure of a DNA decamer 
containing 7,8-dihydro-8-oxoguanine. Proceedings of the National Academy of 
Sciences, U.S.A. 92, 719-723 (1995).

43. Roberts, R.J. and Cheng, X. Base Flipping. Annual Review in Biochemistry 67, 
181-198 (1998).

44. Raoul, S., Berger, M., Buchko, G.W., Prakash, C., Joshi, P.C., Morin, B., 
Weinfeld, M. and Cadet, J. *H, 13C and 15N nuclear magnetic resonance analysis 
and chemical features of the two main radical oxidation products of 2 '- 
deoxyguanosine: oxazolone and imidazolone nucleosides. Journal of the 
American Chemical Society 2, 371-381 (1994).

45. Vialas, C., Pratvieli, G., Claparols, C. and Meunier, B. Efficient oxidation by Mn- 
TMPyP/KHSOs to imidazolone without formation of 8-oxo-dG. Journal of the 
American Chemical Society 120, 11548-11553 (1998).

46. Duarte, V., Muller, J.G. and Burrows, C.J. Insertion of dGMP and dAMP during 
in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. 
Nucleic Acids Research 27, 496-502 (1999).

47. Luo, W., Muller, J.G., Rachlin, E.M. and Burrows, C.J. Characterization of 
spiroiminodihydantoin as a product of one-electron oxidation of 8-oxo-7,8- 
dihyroguanosine. Organic Letters 2, 613-616 (2000).

48. Henderson, P.T., Delaney, J.C., Muller, J.G., Neeley, W.L., Tannenbaum, S.R., 
Burrows, C.J. and Essigmann, J.M. The hydantoin lesions formed from oxidation 
of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. 
Biochemistry 42, 9257-9262 (2003).

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

49. Komyushyna, O., Berges, A.M., Muller, J.G. and Burrows, C.J. In vitro 
nucleotide misinsertion opposite the oxidized guanosine lesions 
spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the 
lesions using Escherichia coli DNA polymerase I (Klenow Fragment). 
Biochemistry 41, 15304-15314 (2002).

50. Henderson, P.T., Delaney, J.C., Tannenbaum, S.R. and Essigmann, J.M.
Oxidation of 7,8-dihydro-8-oxoguanine affords lesions that are potent sources of 
replication errors in vivo. Biochemistry 42, 914-921 (2002).

51. Liu, S., Medvedovic, M. and Dixon, K. Mutational specificity in a shuttle vector 
replicating in chromium(VI)-treated mammalian cells. Environmental Molecular 
Mutagenicity 33, 313-319 (1999).

52. Feng, Z., Hu, W., Rom, W.N., Costa, M. and Tang, M.S. Chromium(VI) exposure 
enhances polycyclic aromatic hydrocarbon-DNA binding at the p53 gene in 
human lung cells. Carcinogenesis 24, 771-778 (2003).

53. David, S.S. and Williams, S.D. Chemistry of glycosylases and endonucleases 
involved in base-excision repair. Chemical Reviews 98, 1221-1261 (1998).

54. Friedberg, E.C., Walker, G.C. and Siede, W. DNA repair and mutagenesis (ASM 
Press, Washington, DC, 1995).

55. Krokan, H.E., Standal, R. and Slupphaug, G. DNA glycosylases in the base 
excision repair of DNA. The Biochemical Journal 325, 1-16 (1997).

56. Halliwell, B. and Gutteridge, J.M.C. Free Radicals in Biology and Medicine 
(Clarendon, Oxford, U.K., 1989).

57. Lindahl, T. and Wood, R.D. Quality Control by DNA repair. Science 286, 1897- 
1905 (1999).

58. Lehmann, A.R. Nucleotide excision repair and the link with transcription. Trends 
in Biochemical Science 20, 402-405 (1995).

59. Lu, R., Nash, H.M. and Verdine, G.L. A mammalian DNA repair enzyme that 
excisies oxidatively damaged guanines maps to a locus frequently lost in lung 
cancer. Current Biology 7, 397-407 (1997).

60. Singhal, R.K., Prasad, R. and Wilson, S.H. DNA polymerase beta conducts the 
gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear 
extract. Journal of Biological Chemistry 270, 949-957 (1995).

61. Cadet, J., Delatour, T., Douki, T., Gasparutto, D., Pouget, J.-P., Ravanat, J.-L. and 
Sauvaigno, S. Hydroxyl radicals and DNA base damage. Mutation Research 424, 
9-21 (1999).

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

62. Shibutani, S., Takeshita, M. and Grollman, A.P. Insertion of specific bases during 
DNA synthesis past the oxidation damaged base 8-oxodG. Nature 349,431-434 
(1991).

63. Grollman, A.P. and Moriya, M. Mutagenesis by 8-oxoguanine: an enemy within. 
Trends in Genetics 9, 246-249 (1993).

64. Wood, M.L., Esteve, A., Momingstar, M.L., Kuziemko, G.M. and Essigmann, 
J.M. Genetic effects of oxidative DNA damage: comparative mutagenesis of 7,8- 
dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine in Escherichia coli. Nucleic 
Acids Research 20, 6023-6032 (1992).

65. Moriya, M., Ou, C., Bodepudi, V., Johnson, F., Takeshita, M. and Grollman, A.P. 
Site-specific mutagenesis using a gapped duplex vector: a study of translesion 
synthesis past 8-oxodeoxyguanosine in E. coli. Mutation Research 254, 281-288 
(1991).

66 . Maki, H. and Sekiguchi, M. MutT protein specifically hydrolyses a potent 
mutagenic substrate for DNA synthesis. Nature 355, 273-275 (1992).

67. Steenken, S., Jovanovic, S.V., Bietti, M. and Bernhard, K. The trap depth (in 
DNA) of 8-oxo-7,8-dihydro-2'-deoxyguanosine as derived from electron-transfer 
equilibria in aqueous solution. Journal of the American Chemical Society 122, 
2372-2374 (2000).

6 8 . Burrows, C.J., Muller, J.G., Komyushyna, O., Luo, W., Duarte, V., Leipold, M.D. 
and David, S.S. Structure and potential mutagenicity of new hydantoin porducts 
from guanosine and 8-oxo-7,8-dihydroguanine oxidation by transition metals. 
Environmental Health Perspectives 110, 713-717 (2002).

69. Duarte, V., Muller, J.G. and Burrows, C.J. Insertion of dGMP and dAMP during 
in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. 
Nucleic Acids Research 27, 2247-2249 (1999).

70. Gates, F.T. and Linn, S. Endonuclease from Escherichia coli that acts specifically 
upon duplex DNA damaged by ultraviolet light, osmium tetroxide, acid, or x-rays. 
Journal of Biological Chemistry 252, 2802-2807 (1977).

71. Radman, M. An endonuclease from Escherichia coli that introduces single 
polynucleotide chain scissions in ultraviolet-irradiated DNA. Journal of 
Biological Chemistry 251, 1438-1445 (1976).

72. Jiang, D., Hatahet, Z., Melamede, R.J., Kow, Y.W. and Wallace, S.S. 
Characterization of Escherichia coli endonuclease VIII. Journal of Biological 
Chemistry 272, 32230-32239 (1997).

73. Hazra, T.K., Izumi, T., Venkataraman, R., Kow, Y.W., Dizdaroglu, M. and Mitra,
S. Characterization of a novel 8-oxoguanine DNA glycosylase activity in

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Escherichia coli and identification of the enzyme as endonuclease VIII. Journal 
of Biological Chemistry 275, 27762-27767 (2000).

74. Hazra, T.K., Muller, J.G., Manuel, R.C., Burrows, C.J., Lloyd, S.R. and Mitra, S. 
Repair of hydantoins, one electron oxidation product of 8-oxoguanine, by DNA 
glycosylases of Escherichia coli. Nucleic Acids Research 29, 1967-1974 (2001).

75. Memisoglu, A. and Samson, L. Base excision repair in yeast and mammals. 
Mutation Research 451, 39-51 (2000).

76. Nilsen, H. and Krokan, H.E. Base excision repair in a network of defence and 
tolerance. Carcinogenesis 22, 987-998 (2001).

77. Takao, M., Kanno, S., Kobayashi, K., Zhang, Q.-M., Yonei, S., van der Horst, 
G.T.J. and Yasui, A. A back-up glycosylase in Nthl knock-out mice is a 
functional Nei (Endonuclease VIII) homologue. Journal of Biological Chemistry 
277, 42205-42213 (2002).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 2: An Oxidized Guanine Lesion Modulating Gene Transcription and Base 

Excision Repair 

2.1: Modulation of Gene Transcription

Oxidation of guanine to 7,8-dihydro-8-oxo-2’-deoyguanosine (8-oxoG) is a 

common DNA lesion produced by endogenous metabolic processes and redox-active 

xenobiotics.2 The high frequency of oxidative guanine modification within DNA arises 

from its oxidation potential being lower than those of the other nucleic acid bases.3 This 

lower oxidation potential is exacerbated in consecutive runs of guanines within a DNA 

sequence causing an increase in oxidative reactivity at the 5’-guanine.4 On the basis of 

the oxidation potentials, DNA sequences that contain a high guanine content or 

consecutive runs of G’s should be particularly prone to oxidative modification. Given 

this tendency toward oxidative modification of high-guanine content DNA, it is 

surprising to note that a number of transcription factor regulatory elements driving redox 

sensitive gene expression contain such consecutive runs of guanines within their 

consensus transcription factor binding sites. One of these redox sensitive transcription 

factors with high guanine content in its recognition sequence is N F-kB .5 NF-kB 

regulation of gene transcription is redox sensitive, but its modulation is usually studied in 

terms of cytoplasmic activation followed by translocation into the nucleus.6 Like most 

transcription factors, dimers of NF-kB proteins modulate transcription by directly binding 

to enhancer sequences located in the regulatory regions of numerous genes. These DNA 

sequences are collectively known as the kB enhancer element. In mammals, the NF-kB 

dimers arise from five polypeptides, p50, p52, p65, RelB, and c-Rel. The most abundant
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of these dimers are the p50/p65 heterodimer and the p50 homodimer.7 The crystal 

structure of the NF-kB p50 homodimer bound to its consensus DNA sequence has been 

determined.1,8 Figure 2.1 shows the multiple contacts via hydrogen bonding between N-7 

and 0 - 6  of guanines within the consensus binding sequence and specific amino acids of 

the p50 protein that confer binding specificity. Formation of oxidized guanine lesions 

within the DNA consensus binding site is predicted to change hydrogen bond donor- 

acceptor patterns that would alter recognition by the transcription factor protein.9 These 

oxidative modifications may also induce structural changes within the DNA such as base 

flipping, bending, or kinking. 10

The impact of such oxidation was also tested by assessing the ability of these 

lesions to be shielded by transcription factor binding from recognition and repair by base 

excision repair (BER) enzymes. For an oxidized guanine lesion to have significant 

impact upon gene transcription, it must be resistant to recognition and repair from 

endogenous repair enzymes on a reasonable cellular time scale. The oxidized lesion, 8- 

oxoG, is usually recognized and excised within DNA by the base excision repair 

enzymes, Fapy glycosylase, Fpg (MutM), in Escherichia coli or the DNA glycosylase 

(hOGGl) in humans.11,12 If oxidized guanine lesions are present in promoter elements 

and affecting gene transcription, such repair would serve to switch the response element, 

along with any transcription effects, back to their “normal” levels.
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Figure 2.1: Sequence-specific DNA-protein interactions identified for the p50 
NF-kB subunit binding with its consensus oligonucleotide sequence. From the 
PDB entry 1NFK.1
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A 22 bp duplex oligonucleotide containing the NF-kB p50 consensus binding site 

was chosen for this study. An 8-oxo-dG lesion was placed at each of the guanine 

positions, G1-G4, in the NF-kB consensus recognition sequence 5’- 

d(AGTTGAGiG2G3G4ACTTTCCCAGCC)-3 ’ on a single strand of DNA within the 

consensus 22 bp duplex. We have observed that the binding affinity of p50 for its DNA 

cognate sequence was either increased, unchanged, or diminished in the response 

elements containing an 8-oxoG lesion and that the nature and magnitude of this effect 

was dependent upon the site of the lesion within the DNA cognate sequence. These 

results indicated that oxidative damage in the response element can modulate gene 

expression on the basis of changes in the binding affinity of transcription factors for 

modified guanine lesions within the DNA cognate recognition sequence.

Table 2.1: Control and Modified Oligonucleotide Sequences Incorporating the
NF-kB Promoter Site.

oligo no. sequence (top strand only)2

1 5’-AGT TGA GlG2 G3 G4AC TTT CCC AGC C-3’
2 5’-AGT TGA Gi°G2 G3 G4AC TTT CCC AGC C-3’
3 5’-AGT TGA G XG2 G3 G4AC TTT CCC AGC C-3’
4 5’-AGT TGA GlG2 G3°G4AC TTT CCC AGC C-3’
5 5’-AGT TGA GiG2 G3 G4°AC TTT CCC AGC C-3’

aBold and italic type denotes the p50 consensus recognition sequence.
G° denotes the site of 8-oxoG placement.

We have further shown that shielding of repair from BER enzymes does indeed 

occur by the binding of the p50 transcription factor to the modified DNA sequences.

This shielding effect directly correlated with the differing binding affinities afforded by 

site-specific oxidized DNA lesions. This type of DNA damage shielding by a protein can
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be compared to the high-mobility group protein shielding of platinated DNA adducts and 

would be expected to significantly increase the lifetime and impact of these lesions on 

gene expression.

In addition to studying the effect of cellular lifetime of a lesion by shielding, 

structural complications from lesion formation have been investigated. DNA bending, 

kinking, and base flips are established structural motifs that recruit both transcription 

factors and repair proteins. Lesion formation in DNA is thought to “hijack” non-target 

transcription factors and act as promiscuous protein binding sites. The structural impact 

of 8-oxoG on transcription factors binding to response elements has not been previously 

investigated. DNA-baiting experiments with 8-oxoG causing defined structural 

perturbations has been carried out using a biotinylated DNA “bait” bound to a 

streptavidin column. Elution of HeLa protein extract (normal and heat-shocked) was 

used to probe for “hijacked” proteins that are bound to the modified sites of the NF-kB 

regulatory element. Analysis of the impact that these structures have on transcription 

factor binding will give us an understanding of how these lesions act as oxidative 

signaling events to cause up- or down-regulation of gene expression. The existence of 

such a signaling mechanism proposed herein may account for some of the discrepancies 

between cellular responses to redox-active carcinogens and describes a novel mechanism 

by which oxidized guanine lesions may control cellular behavior and induce cell 

transformation.
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2.2 Lesion Impact on Transcription Factor Binding Affinity

The impact of oxidized guanine lesions on transcription factor binding was tested 

using the p50 subunit of NF-kB with its DNA cognate recognition sequence, 5’- 

d(AGTTGAGiG2G3G4ACTTTCCCAGCC)-3 ’. An electromobility shift assay (EMSA) 

was carried out with increasing concentrations of the p50 transcription factor to 

characterize the impact that single 8-oxoG sites at position G1-G4 have on the affinity of 

p50 for its cognate sequence. Representative EMSA autoradiograms in Figure 2.2A-E 

show the binding affinity of the p50 transcription factor with the binding affinity of the 

32P-labeled unmodified DNA cognate recognition sequence and each of the 32P-labeled 

oligonucleotides containing the four sites of 8-oxoG modification (Table 2.1, denoted as 

G°). These autoradiograms show the concentration-dependent formation of the gel- 

shifted band corresponding to the DNA-protein complex (DNA-P) with increasing p50 

concentrations between 0 and 20 pmol (0-2000 nM). Densitometric analysis was 

performed on a minimum of two autoradiograms for the unmodified DNA sequence and 

the four 8-oxoG-modified DNA sequences to determine the percent of DNA that was in 

the form of the DNA-protein complex (Figure 2.3). The apparent dissociation constants 

(Kapp) under these conditions for each of the 8-oxoG-modified sites and the unmodified 

control were determined graphically as the point where the percent bound was equal to 

50%. The calculated Kapp values for the unmodified and the four 8-oxoG-modified 

oligonucleotides are given in Table 2.2. The relative Kapp for the unmodified control was 

found to be 672 nM with little change in the 50% binding affinity observed with the 8- 

oxoG modifications at G2 and G4. The 8-oxoG modification, when present at the G3 site, 

showed an approximate 4-fold decrease in Kapp for binding of the p50 subunit to this
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modified DNA sequence versus the unmodified DNA sequence. This 4-fold decrease in 

Kapp is in agreement with that previously observed when p50 binds as a monomer to a 

single DNA half-site.7 This lowered p50 binding affinity suggests that 8-oxoG 

modification at G3 causes a loss in recognition of one of the DNA half-sites of the target 

oligonucleotide. Conversely, the Gi 8-oxoG modification showed a nearly 2.5-fold 

increase in binding affinity over that of the unmodified cognate DNA sequence. These 

data demonstrate that, depending upon the site of modification within the DNA cognate 

sequence, an increase or decrease in p50 binding affinity occurs upon the formation of 

oxidized lesions. In turn, these lesions would be expected to modulate gene transcription 

based on their ability to change this transcription factor binding affinity.

Table 2.2: Binding Affinity of 8-oxoG-Modified Oligonucleotides with p50
oligonucleotide Kapp binding affinity (nM)

Control 672 ± 22
8-oxoG at Gi 283 ± 7
8-oxoG at G2 644 ± 35
8-oxoG at G3 2340 ± 40
8-oxoG at G4 550 ± 35
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Figure 2.2: Representative autoradiograms showing the gel shift induced by 
binding of the p50 subunit of NF-kB to the control and 8-oxoG-modified 5’-32P- 
labeled DNA recognition sequence. All five panels demonstrate the concentration 
dependence of the DNA-p50 complex (from left to right) with the addition of 0, 2.4, 
4.8, 7.5, 10, 15, and 20 pmol of p50. From: Hailer-Morrison, et. al. (2003) 
Biochemistry 42, 9761-9770.
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Figure 2.3: Graphical representation of the densitometric data obtained from the 
autoradiograms in Figure 2.2. Data are reported as a percent of the DNA complexed 
with protein vs the concentration of p50 needed to induce the corresponding gel shift. 
From: Hailer-Morrison, et. al. (2003) Biochemistry 42, 9761-9770.

2.3 Lesion Shielding from Base Excision Repair by p50 Binding

8-oxoG lesions are recognized and repaired by endogenous base excision repair 

enzymes. For oxidized guanine lesions in regulatory elements to impact gene 

transcription by changing transcription factor binding affinity, their cellular lifetime 

(resistance to repair) must be on a time scale that could lead to significant changes in 

cellular protein synthesis. Our hypothesis was that binding of transcription factors to 

oxidatively modified promoter sites affords protection from recognition and repair by 

BER and results in a significant expansion of lesion lifetime in the cell, which 

dramatically impacts gene transcription. We have developed a competition cleavage
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assay based on the work of Leipold et al. 13 using the E. coli BER enzyme (Fpg) or the 

human BER enzyme (hOGGl). This assay relies on the ability of these repair enzymes to 

recognize and cleave oxidized guanine lesions on DNA. The ability of p50 bound to the 

modified NF-kB promoter site to shield the lesions from BER recognition was 

determined by loss of DNA cleavage. Panels A-D of Figure 2.4 are representative 

autoradiograms showing that increasing p50:Fpg ratios markedly affect the time- 

dependent ability of the BER enzyme to recognize and cleave 8-oxoG at the Gi site in the 

DNA recognition sequence. Panels A-D of Figure 2.4 correspond to increasing p50:Fpg 

ratios of 0, 0.22, 0.35, and 0.61 respectively. The time dependence of the cleavage 

reaction using Fpg was determined between 0 and 60 min. Under conditions where no 

p50 is present (Figure 2.4A), the cleavage reaction at the 8-oxoG site is complete by 30 

min. With increasing amounts of p50, the 8-oxoG site is shielded from recognition and 

cleavage by Fpg with nearly 100% shielding afforded at a p50:Fpg ratio of 0.61 for up to 

60 min. The smearing of the upper bands observed in the autoradiograms containing p50 

(Figure 2.4B-D) was a consequence of the binding of p50 to the modified 

oligonucleotide. The time-dependent cleavage shielding patterns for all four 8-oxoG 

modifications at the four different p50:Fpg ratios are shown in panels A-D of Figure 2.5. 

As would be expected, the cleavage shielding of the 8-oxoG modification afforded by 

p50 directly correlates with the p50 transcription factor’s binding affinity for these 

modified sites. The relative levels of shielding of the lesion by p50 for the different 

modifications were as follows: Gi > G4 > G2 »  G3. The G3-modified site showed no 

lesion shielding effect (or even an enhancement of cleavage) for p50 (Figure 2.5C), 

which corresponded with the significantly lower binding affinity in comparison to that of
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the Gi-modified site. The percent shielding for the different sites of modifications at the 

60 minute time point and at the different p50:Fpg ratios is given in Table 2.3.

Time

7 nt.
cleavage
product

7nt.
cleavage

7 tit.
cleavage
product

Figure 2.4: Representative autoradiograms from the Fpg cleavage assay for determining 
the time-dependent and p50 concentration-dependent shielding of the Gi 8-oxoG in the 22 
bp NF-kB recognition element. The time points for each cleavage analysis for all gels were 
(from left to right) 0, 0.25, 0.5, 1, 2, 4, 8 , 15, 30, and 60 min. Panel A shows the time- 
dependent cleavage with no p50 added. Panels B, C, and D show the time-dependent 
cleavage with a p50:Fpg ratio of 0.22, 0.35, and 0.61 respectively. The bands labeled 22 nt 
oligo are the uncleaved DNA, while the bands labeled 7 nt cleavage product are the 
cleavage products generated from base excision by the Fpg enzyme.
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Table 2.3: Percent Inhibition of Fpg Cleavage of 8-OxoG-Modified 
Oligonucleotides at 60 min with Different p50 Molar Ratios.

Oligonucleotide
0.22 p50:Fpg 
molar ratio

0.35 p50:Fpg 
molar ratio

0.61 p50:Fpg 
molar ratio

8-oxoG at Gi 17.1 ± 11.4 48.7 ± 10.7 92.4 ± 5.2
8-oxoG at G2 8.5 ± 8.7 30.4 ± 5.9 62 ± 3.2
8-oxoG at G3 -27.9 ± 7.8 -22.6 ± 5.9 -17.4 ±20.1
8-oxoG at G4 42.3 ±2.1 68.9 ± 11.7 91.9 ±2.1
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Figure 2.5: Graphical representation of the time-dependent cleavage of the 8-oxoG- 
modified oligonucleotides (G1-G4) at different p50:Fpg ratios. An average of a 
minimum of two gels (maximum of four gels) for each data point was plotted.
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A similar experiment for p50 lesion shielding was carried out using the human 

base excision repair enzyme (hOGGl). A representative set of autoradiograms for the 

same oligonucleotide modified with 8-oxoG at Gi is shown in panels A-D of Figure 2.6. 

Due to the lower reactivity of hOGGl towards the 8-oxoG lesion, an increased enzyme 

concentration was used and the experiment was carried out for 120 min at 37 °C. The 

hOGGl enzyme also demonstrated nearly 100% cleavage at 30 min when no p50 was 

present (Figures 2.6A and 2.1 A). With the addition of p50 and hOGGl ratios of 0.07,

0.11, and 0.19, a significant degree of shielding of the 8-oxoG-modified lesion from 

cleavage by hOGGl was again observed. All four sites of 8-oxoG modification were 

analyzed using identical p50:hOGGl ratios over the 120 min time course (Figure 2.7A- 

D). Once again, the shielding of the lesions from BER recognition roughly followed the 

p50 transcription factor binding affinity changes for the different lesions. The G3 

modification showed the weakest ability to shield the 8-oxoG modification from 

recognition and cleavage, although not as well as with the Fpg. The Gi, G2, and G4 

modifications all exhibited similar levels of shielding ability at the different p50 

concentrations. The shielding data for hOGGl are listed for the 60 min time point in 

Table 2.4. The p50:hOGGl ratio that was necessary to induce nearly 100% shielding of 

the lesions at Gi, G2, and G4 is 3 times lower than that needed for the Fpg enzyme.

Taken together, these results have shown that the p50 transcription factor, when bound to 

an 8-oxoG modified promoter element, can effectively shield these lesions from 

glycosylase recognition and repair, which could extend their cellular lifetimes and 

exacerbate their effect on gene transcription.
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Figure 2.6: Representative autoradiograms from the hOGGl cleavage assay for 
determining the time-dependent and p50 concentration-dependent shielding of the Gi 8- 
oxoG site in the NF-kB recognition element. The time points for each cleavage analysis 
for all gels were (from left to right) 0, 1,2, 4, 8 , 15, 30, 60, 90, and 120 min. Panel A 
shows the time-dependent cleavage with no p50 added. Panels B, C, and D show the 
time-dependent cleavage with a p50:hOGGl of 0.07, 0.11, and 0.19 respectively. The 
bands labeled 22 nt oligo are the uncleaved DNA, while the bands labeled 7 nt cleavage 
product are the cleavage products generated from base excision by the hOGGl enzyme.

Table 2.4: Percent Inhibition of hOGGl Cleavage of 8-oxoG-Modified 
Oligonucleotides at 120 min with Different p50 Molar Ratios.

0.07 p50:hOGGl 0.11 p50:hOGGl 0.19 p50:hOGGl
Oligonucleotide molar ratio molar ratio molar ratio

8-oxoG at Gi 42.9 ± 1.7 62.3 ±13.6 83.1 ± 17.2
8-oxoG at G2 45.5 ± 3.7 60.3 ± 11.7 85.2 ± 13.5
8-oxoG at G3 20.6  ± 2.0 33.6 ± 13.9 46.8 ± 8.4
8-oxoG at G4 38.7 ± 3.2 54.4+ 5.0 85.5 ± 5.9
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Figure 2.7: Graphical representation of the time-dependent cleavage for hOGGl 
cleavage of the 8-oxoG-modified oligonucleotides (G1-G4) at different p50:hOGGl 
ratios. An average of a minimum of two gels (maximum of four gels) for each data 
point was plotted.
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2.4 Streptavidin/Biotin Pull Down Assay

The biotin/streptividin affinity column assay, or “pull down” assay was used to 

determine which proteins are recruited to certain DNA sequences with and without 

oxidative modifications present. A biotinylated double stranded DNA fragment 

containing a position specific 8-oxoG in the NF-kB response element was bound to a 

streptavidin column with binding buffer (12% glycerol, 12 mM HEPES-NaOH (pH 7.9), 

4 mM Tris-HCl, 60 mM KC1, 1 mM EDTA, 1 mM DTT). The tethered biotin label was 

placed on the 5’-end of the complementary sequence to the DNA strand containing the 

lesion in order to minimize interference of the solid matrix (streptavidin-coated beads). 

Protein extract from HeLa cells were allowed to bind to the DNA on the column and the 

double-stranded oligonucleotide was washed with increasingly stringent wash conditions 

(1-2 M KC1). High affinity proteins were not removed by the elution conditions (12% 

glycerol, 20 mM Tris-HCl (pH 6.8), 1 M KC1 up to 2 M KC1, 5 mM MgCl2, 1 mM 

EDTA, ImM DTT). These proteins were removed by boiling the streptavidin beads for 

10 min in SDS-PAGE buffer. The eluted proteins were run on a 10-20% gradient gel and 

visualized by silver staining (Figure 2.8). Initial studies on the control oligonucleotide 

show bands corresponding to the p50 protein weight. Studies of the modified NF-kB 

oligonucleotide (Gi position) were quite specific with a relatively small number of 

proteins being isolated after increasingly stringent washing of the beads. In addition to a 

band corresponding to p50, other specific and yet unidentified bands were also isolated. 

Identification of the specific bands can be accomplished by Western blot (i.e. p50, p65 

proteins). This assay needs further development to more conclusively determine the 

expected and unnatural binding of proteins to a lesion containing DNA promoter site.
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HeLa extract

Figure 2.8: A. Silver stain SDS-PAGE gel illustrating the specific proteins attached 
to an 8-oxoG NF-kB oligonucleotide when reacted with HeLa cellular extract. Lane 1, 
molecular weight markers. Lane 2, biotinylated oligonucleotide with an 8-oxoG 
modification at the G3 position of the NF-kB binding sequence reacted with HeLa 
cellular extract. Lane 3, biotinylated unmodified oligonucleotide reacted with HeLa 
celluar extract. Samples 2 and 3 were collected by boiling the streptavidin bead slurry 
in SDS-PAGE loading buffer before loading onto the gel. B. Schematic of the pull­
down assay used to isolate proteins bound to the control and modified 
oligonucleotides under high affinity conditions.

2.5 Discussion and Conclusions

A guanine positioned 5’ to a contiguous run of guanines is more prone to 

oxidation to the 8-oxoG lesion.4 The NF-kB transcription factor binds a DNA upstream 

regulatory element with a consensus GGGRNNYYCC sequence that includes such a 

guanine run, with the first five bases more highly conserved that the second five.6’14 The
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base immediately proceeding this sequence could be any one of the four bases, although 

this base is predominately a guanine in the stress response genes, i.e. NF-kB.15'20 While 

this preceding guanine base is outside of the consensus recognition sequence, X-ray 

crystallography has identified a histidine residue within the p50 protein that can make
D

contact with this base. The NF-kB protein binds DNA as a heterodimer consisting of 

p50 and p65 (RelA) subunits, although the p50 subunit can also bind and activate 

transcription as a homodimer.1,8 The NF-kB transcription factor recognizes its consensus 

binding site through hydrogen bonding interactions between the p50 subunit and nucleic 

acid bases in the major groove of double-stranded DNA. The structural consequence of 

the oxidation of guanine to 8-oxoG is the conversion of N-7 of guanine from a hydrogen 

bond acceptor (“A”) to a hydrogen bond donor (“D”) (Figure 2.9). Several of the bases, 

such as G2 and G3 (Figure 2.1), have two stabilizing hydrogen bonds per base. This 

oxidative modification does not affect the hydrogen bond accepting ability of 0 - 6  of 

guanine. Further sequence binding specificity involving guanine in this promoter 

element is conferred through the formation of a bifurcated hydrogen bond between 0 - 6  

of G4 (upper strand) and 0-4 of Tg> (lower strand). In normal B-form DNA, an 8-oxoG 

modification has not been shown to induce a significant structural change in base 

stacking but does form the basis for recognition by DNA repair enzymes.9
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Figure 2.9. Hydrogen bond donor-acceptor pattern for guanine and 8-oxoG (G°) in 
double-stranded DNA.

We have studied the effect of 8-oxoG at each guanine site within the DNA 

binding sequence for the p50 subunit of the N F-kB transcription factor. The synthesis of 

oligonucleotides containing the NF-kB regulatory element with single 8-oxoG 

modifications at sites G1-G4 was designed to study the effect of this common DNA lesion 

on the binding affinity of the p50 transcription factor. Our hypothesis was that a single 

p50 subunit would have a disrupted binding site (loss of a stabilizing H-bond) but the 

other subunit would have a “normal” binding site across the 2-fold axis of symmetry (see 

Fig. 2.1). A loss of a stabilizing hydrogen bond should result in the overall lowering of 

binding affinity of p50 for this modified sequence with a concomitant decrease in the 

degree of gene transcription. This manner of transcriptional control in the nucleus by 

reactive oxygen species (ROS) modification of promoter/enhancer sites would be 

profoundly different than the commonly accepted role of ROS on transcription factors.
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This method of transcriptional control would constitute a “direct functional role” for 

reactive oxygen species in the NF-kB transcriptional response.21 Currently, the accepted 

role for ROS in relation to gene transcription changes involves oxidation of critical 

cysteine residues that act as a sensor of redox status to modulate DNA binding or the 

transactivating activity of the transcription factor protein.22

p50 Binding Affinity Changes. Our studies have shown that incorporation of 8- 

oxoG within the NF-kB regulatory element can affect binding of the p50 subunit of this 

transcription factor, but that the effect is dependent upon the position of the modified 

lesion. Since the initial binding to DNA by transcription activating proteins is required 

for recruitment of the remaining transcription factor complex proteins, these effects 

should lead to a change in the rate of gene expression. An up- or down-regulation of 

gene transcription could be envisioned, depending upon whether this modification results 

in higher or lower binding affinity of transcription factors. We note that at this time we 

are not measuring gene transcription changes, per se, but only transcription factor binding 

affinities.

We have hypothesized that changes in the hydrogen bond donor-acceptor patterns 

between the protein and DNA form the basis of the altered binding affinity based upon 

crystal structures of 8-oxoG in DNA that have shown little perturbation in DNA 

structure.9 It is also possible that under conditions where p50 is bound, a base flip, kink, 

or bend is generated at the site of the lesion within a double-stranded oligonucleotide. 

These structural perturbations at the site of the lesion could enhance p50 binding affinity 

by the formation of additional hydrogen donor-acceptor pairs with adjacent amino acids 

or through structural mimicry. Such structural mimicry has been characterized for high-
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mobility group proteins binding to cisplatin-bent oligonucleotides or for repair enzyme 

recognition of base-flipped structures.10 Runs of guanines such as those in the current 

NF-kB regulatory element and in telomeric repeats have been previously shown to form 

quadruplex DNA.24 Insertion of 8-oxoG at the 5’-position in a GGG triplet of a human 

telomeric sequence can induce quadruplex formation and inhibit telomerase activity.25 

We cannot rule out the possibility that this same structural change could account for the 

high-affinity p50 recognition site generated at the Gi site observed in this study.

Lesion Shielding Assays. The impact of base lesions on transcription factor 

binding and the ensuing gene transcription would depend on the cellular lifetime of the 

lesion. Repair of base lesions in regulatory elements would quickly return gene 

transcription to normal levels with little overall effect. However, this work has shown 

that the binding of p50 to the 8-oxoG-modified NF-kB regulatory element can effectively 

shield these lesions from recognition and repair by base excision repair enzymes. The 

shielding effects afforded by p50 directly correlated with the binding affinity that was 

induced by the 8-oxoG modifications. The 5’-G, Gi, in the GGGG quadruplet sequence 

showed the highest binding affinity and the greatest lesion shielding. If present in 

cellular systems, this combination of effects would serve to exacerbate the change in gene 

transcription by both enhancing gene transcription (tighter binding) and increasing the 

cellular longevity of the lesion (shielding). Conversely, the modification at G3 in the 

quadruplet sequence showed the greatest loss in binding affinity and a negligible repair 

shielding effect. Modification at this site may not impact gene transcription as 

dramatically since the lesion would be readily recognized and excised from the sequence. 

Precedent for this type of repair shielding has been shown for the cisplatin antitumor
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agent where binding of high-mobility group proteins to cisplatin-modified DNA has been 

shown to shield this lesion from nucleotide excision repair enzymes, leading to an 

exacerbation of its toxic effect.23 This study suggests that modulation of gene 

transcription via guanine oxidation in promoter elements is a dynamic process that 

balances transcription factor binding affinity with DNA repair of the modified bases in a 

concerted manner.

Streptavidin Pull-Down Assay. The biotinylated DNA bound to a streptavidin 

matrix is a useful way to isolate specific protein-DNA complexes. In our study, the DNA 

used was specific for the p50 protein of the N F-kB transcription factor complex. We 

hypothesized that placing a lesion, such as 8-oxoG, into the p50 binding site could 

possibly change the recruitment patterns of the DNA. The recruitment of specific 

proteins to DNA containing a lesion was compared to control DNA. Our preliminary 

data shows that the biotinylated DNA containing the 8-oxoG lesion bound a small 

number of proteins very tightly and the number and weights of these proteins differed 

from the proteins bound by the control oligo (see Figure 2.8). Upon probing these 

proteins by Western Blot with p50 and p65 antibodies (both members of the N F-kB 

complex), the results were negative. This does not conclusively rule out the recruitment 

of these two proteins, due to the fact that the positive control for both antibodies was also 

negative. The potential does exist to identify these proteins (p50, p65) by Western Blot. 

Other unknown bands can be identified by two dimensional gel analysis, followed by 

excision of the protein bands and identification either by MALDI-MS or by ESI-MS after 

an in-gel digest and extraction of the peptide fragments. This assay was necessary to 

show that these modified promoter elements are indeed recognized by their specific
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transcription factors, but can also show whether there is a change in recognition in terms 

of affinity changes of normal transcription factors or in the unnatural binding of 

“spectator” proteins.

2.6 Experimental Procedures

2.6.1 Oligonucleotide Preparation

Oligonucleotide substrates: The 8-oxoG containing oligonucleotides were 

purchased from TriLink BioTechnologies and unmodified strands were purchased from 

Integrated DNA Technologies. Table 2.1 shows the sequence and site of the 

modification of the top strand of the oligonucleotides used in this study. Purification of 

the oligonucleotides prior to use was accomplished by HPLC using a Dionex Nucleopac 

PA-100,4 mm x 250 mm anion exchange column employing a linear gradient from 90% 

mobile phase A (10% aqueous acetonitrile) and 10% mobile phase B (1.5 M ammonium 

acetate, pH 6.0 in 10% acetonitrile) to 100% mobile phase B over 31 minutes. Eluting 

oligonucleotides were monitored at 268 nm. The fraction containing the oligomer was 

eluted as a single peak, collected and lyophilized to dryness, and purified into deionized 

water using a Bio-Rad Micro Bio Spin 6 Column. Pure oligonucleotides were stored at - 

20 °C until needed. The 5’-32P-end-labeled oligomers were prepared by standard 

methods.

2.6.2 Electromobility Shift Assay and Data Analysis

Electromobility Shift Assay (EMSA). Purified recombinant human p50 protein 

was purched from Promega, Inc. DNA-p50 reactions were carried out using 6.4 pmol 

(640 nM) of the appropriate 5’- P-labeled oligonucleotide that had been annealed to its
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complementary sequence to generate the double-stranded oligonucleotide needed for 

recognition and binding by the p50 protein. The annealing was carried out by using a MJ 

Research DNA thermal cycler in 10 mM Tris-HCl (pH 7.4) at 95°C for 5 min followed 

by a slow cooling to room temperature (RT) over the course of 2 hours. Identical 

concentrations were ensured by measuring the OD at A260 of the stock DNA solutions. 

The reactions for p50 binding were carried out in a binding buffer containing 1 mM 

MgCl2, 0.5 mM EDTA, 0.5 mM DTT, 50 mM NaCl, 10 mM Tris-HCl (pH 7.5), and 0.05 

pg/pL of poly(dl-dC) in 4% glycerol. The p50 protein was added at increasing 

concentrations, 2.4-20 pmol (240-2000 nM), to the reaction mixtures and allowed to bind 

for 30 min at room temperature. An additional 1 pL of 40% glycerol was added to all 

reaction mixtures to facilitate loading. Gels were run on a 6% Novex DNA retardation 

gel at 300 V for 15 min. The gel shifts were analyzed by autoradiography and quantified 

by densitometry using a BioRad GS-800 calibrated densitometer using QuantityOne 

software.

Data Analysis. The EMSA analysis of binding affinity for the control and 8- 

oxoG modified oligonucleotides was carried out by integrating the area for each band and 

dividing the area of the protein-bound DNA by the total area of the bound and free DNA 

bands to give a percent bound.26 The apparent dissociation constant (Kapp) was 

determined graphically as the point where the fraction bound equals 50%. Analysis of 

the gel shifts were carried out on two to four gels for each of the different modifications.

2.6.3 Lesion Shielding Assay and Data Analysis

Oxidative Lesion Shielding Assay. Purified human 8-oxoguanine DNA 

glycosylase (hOGGl) and E. coli formamidopyrimidine-DNA glycosylase (Fpg) were
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purchased from Trevigen. Reactions were carried out using 10 pmol (1000 nM) of the 

appropriate 5’-32P-end-labeled oligonucleotide that had been annealed to its 

complementary sequence to generate the double-stranded oligonucleotide necessary for 

p50 or glycosylase recognition. Identical concentrations of DNA were assured by 

measuring the OD at A260 of the stock DNA solutions.

DNA Cleavage Assays with Fpg. The reactions for p50 shielding with Fpg were 

carried out at 25 °C in 10 mM HEPES-KOH (pH 7.4), 10 mM KC1, 1 mM EDTA, and 

0.01 mg/mL BSA with a total reaction volume of 60 pL in a manner similar to that
1 -2

described previously. The p50 transcription factor protein was added at increasing 

concentrations to the 8-oxoG-modified oligonucleotide and allowed to incubate for 30 

min at 25 °C before addition of 900 nM Fpg. The p50:Fpg enzyme ratios tested for 

lesion shielding were 0, 0.22, 0.35, and 0.61. Aliquots (5 pL) were removed at 0, 0.25, 

0.5,1, 2, 4, 8, 15, 30, and 60 min for analysis of DNA cleavage.

DNA Cleavage Assays with hOGGl. The reactions for p50 shielding with 

hOGGl were carried out in 20 mM Tris-HCl (pH 8.0), 1 mM EDTA, 1 mM DTT, and 

100 pg/mL BSA. The p50 was preincbated with the modified oligonucleotides at 25 °C 

for 30 min before the addition of 3000 nM hOGGl to give p50:hOGGl ratios of 0, 0.07,

0.11, and 0.19. Reactions were allowed to proceed at 37 °C, and 5 pL aliquots were 

removed at 0, 1, 2,4, 8, 15, 30, 60, 90, and 120 min for analysis of DNA cleavage.

Gel Electrophoresis Conditions and Data Analysis of Fpg and hOGGl 

Cleavage of 8-oxoG-Modified Oligonucleotides. At each time point for the respective 

glycosylase, the samples were quenched by the addition of an equal volume of 

formamide denaturing loading dye (10 mL of formamide, 10 mg of xylene cyanol FF,
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and 10 mg of bromophenol blue) that was preheated to 95 °C. The sample mixtures were 

kept at 95 °C for 4 min before being loaded on a 15% TBE, 7 M urea precast mini gel. 

Gels were run in TB buffer for -40 min at 180 V. The faster migrating bands resulting 

from glycosylase recognition and excision were analyzed by autoradiography and 

quantified by densitometry using a BioRad GS-800 calibrated densitometer with 

QuantityOne software. Two to four gels were used for quantification of each modified 

oligonucleotide at each time point.

2.6.4 Streptavidin/Biotin Pull Down Assay

Column Format of Streptavidin/Biotin Protein Isolation Assay with 8-oxoG 

Modified Oligonucleotide. The UltraLink Immobilized Streptavidin kit was purchased 

from Pierce (Rockford, IL) and the HeLa Cell Lysate was purchased from Stressgen 

Biotechnologies (Victoria, BC Canada). The streptavidin columns were made following 

the manufactures instructions for the column format affinity purification procedure. 

Briefly, 0.35 mL of strepavidin slurry was used to construct the column. The column was 

first equilibrated with the addition of 5 column volumes of Binding Buffer (12% glycerol, 

12 mM HEPES-NaOH (pH 7.9), 4 mM Tris-HCl (pH 7.9), 60 mM KC1, 1 mM EDTA, 

and 1 mM DTT). After equilibration, approximately 0.15 mg of a biotinylated 

unmodified or 8-oxoG containing NF-kB oligonucleotide was added to the column. The 

biotinylated oligonucleotide was mixed with the streptavidin column for 30 minutes at 

room temperature with gentle rocking. The biotin/strepavidin column was then washed 

with 10 column volumes of Binding Buffer. To the column, 10 pL of HeLa cellular 

extract was added and allowed to react with the column overnight at 4 °C. The following 

day, the column was again washed with 10 column volumes of Binding Buffer. The un-
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bound proteins would be removed during the column washing step. The bound proteins 

were eluted under increasingly stringent conditions with Elution Buffer (12% glycerol, 20 

mM Tris-HCl (pH 6.8), 1 M -  2 M KC1, 5 mM MgCl2, 1 mM EDTA, 1 mM DTT). 

Fractions were collected from each elution wash. After eluting the proteins, 20 pL of the 

column slurry was removed and these beads were boiled for 10 min in SDS-PAGE 

loading buffer. The elution samples and the boiled bead samples were run on a 10-20% 

SDS-PAGE gradient gel and Coomassie Blue stained. If no bands were visible by 

Coomassie staining, the gel was re-stained by Silver staining.
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Chapter 3: The Formation and Repair of Guanidinohydantoin and 

Spiroiminodihydantoin

3.1 The Further Oxidation of 8-oxoG

Chromate, Cr(VI), has been established as a human carcinogen, although its 

mechanism of action has not been clearly defined.1,2 The reaction of chromate with DNA 

creates a number of putative lesions in cellular systems including inter- and intra-strand 

cross-linked adducts, DNA-protein cross-links, DNA strand breaks, abasic sites, and 

oxidized nucleic acid bases.3'7 The tetrahedral anionic conformation of the +6 oxidation 

state of chromium facilitates active transport into cell systems through the phosphate and 

sulfate cellular transport systems.8 However, Cr(VI) is not the oxidation state that reacts 

with DNA. The cellular reduction of Cr(VI) to its stable +3 oxidation state forms a wide 

variety of intermediate high-valent (+4 and +5) oxidation states of chromium, as well as 

reductant-specific carbon-, oxygen-, and sulfur-based free radicals.9'12 Both the high- 

valent chromium intermediates and free radicals have the potential to cause oxidative 

DNA damage promoted by Cr(VI). The DNA damage that occurs during this reduction 

process remains in debate, specifically with regard to the type of lesion(s) that is being 

formed and the mechanism of its formation.

Oxidative damage and the formation of oxidized lesions in DNA is considered 

one of the critical steps in the induction of carcinogenesis by Cr(VI). Oxidation of DNA 

can occur at the deoxyribose sugar creating DNA strand breaks or at the nucleic acid
1 -5

bases creating oxidized base lesions. Many oxidative lesions of nucleobases have been
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identified and quantified in vitro and in vivo, but to date, only 7,8-dihydro-8-oxoguanine 

(8-oxoG) has been identified in reactions with Cr(VI).14,15 The ubiquity of this lesion in 

many oxidizing systems arises from the lower reduction potential of guanine in 

comparison to the other nucleic acid bases. Oxidation of guanine has also been observed 

to be influenced by DNA sequence with the 5’ guanine in a run of purines showing 

enhance levels of oxidation.16,17 The 8-oxoG lesion is mildly mutagenic and has been 

shown to mispair with adenine during DNA replication giving rise to G:C -> T:A 

transversion mutations.18 Recent studies have shown that 8-oxoG has a significantly 

lower reduction potential than the parent guanine itself, making it highly reactive toward 

further oxidation.19,20 Oxidative hole migration can occur over long distances 21, and 

certain lesions, such as 8-oxoG, can act as sinks for electron hole trapping leading to a 

hot spot for damage and mutation. Previously, the reaction of Cr(V) complexes with 

single-stranded DNA containing the 8-oxoG lesion has shown further oxidation 

exclusively at the 8-oxoG site.22,23 The further-oxidized lesions formed in this reaction 

were determined to be spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh).22

The Sp and Gh lesions produced the G:C T:A mutations observed for 8-oxoG 

but at significantly greater levels than 8-oxoG alone. Also, Sp and Gh have been shown 

to produce significant levels of G:C -> C:G transversion mutations and polymerase

oo  o a  on  _arrest. ’ ' Significantly, these G:C -> T:A and G:C -> C:G transversion mutations are 

the primary mutations observed in human lung tumors from chromate-exposed workers 

and in shuttle vector replication assays in Cr(VI)-treated mammalian cells.28,29

Oxidative damage to individual DNA bases is repaired via the base excision 

repair (BER) pathway which recognizes and removes damaged bases from DNA.30
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MutM/Fpg removes the 8-oxoG lesion when it is paired opposite a cytosine while MutY 

removes the mismatched adenine from an 8-oxoG:A or a G: A pair to provide a second 

chance for Fpg recognition and repair.31 Previously only two mammalian repair 

enzymes, 8-oxoguanine-DNA glycosylase (OGGI) and endonuclease III homolog 1 

(NTH1), were known to recognize and cleave oxidized guanine lesions from DNA.32 

Surprisingly, Nthl knockout mice remain healthy33 and while Oggl-/- mice show 

increased mutation rates in some tissues, they have no associated increase in the 

incidence of cancer.34,35 These findings suggested that an additional BER enzyme system 

exists that can recognize oxidized guanine residues.

A new set of BER enzymes have been identified that are mammalian homologs of 

the E. coli MutM/Nei (endonuclease VIII) family.36'38 These mammalian homologs of 

Nei were designated the “Nei-like” or, “NEIL” family of glycosylases. The NEIL1 gene 

maps to the 15q22 chromosome in humans and loss of heterozygosity at this site is 

observed in over 70% of small cell lung carcinoma.39 Initially the identified substrates of 

NEIL1 and NEIL2 have consisted mainly of oxidized pyrimidines such as 5- 

hydroxyuracil (5-OHU), the formamido-pyrimidines, (FapyG and FapyA), and thymine 

glycol.36'38,40 In addition, the human NEIL enzymes have been shown to recognize 5- 

OHU and 8-oxoG in single-stranded bubble structures of DNA.

In this chapter, we will report the identification of two additional oxidized lesions 

that are readily recognized and cleaved by both murine NEIL1 and NEIL2. The lesions 

guanidinohydantoin (Gh), its isomer iminoallantoin (la) (collectively referred to only as 

Gh), and spiroiminodihydantoin (Sp), are further oxidize products of the common 8- 

oxoG lesion. Although these further oxidized lesions can be recognized and removed by
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the E. coli DNA glycosylases Fpg 41 and N ei42, no mammalian BER counterpart for the 

recognition of these further oxidized products has been previously determined. This 

work demonstrates that the murine NEIL1 BER enzyme can remove Gh and Sp when 

paired opposite all four bases of DNA. NEIL2 can recognize and remove double­

stranded Gh opposite all four DNA bases but little cleavage of the Sp lesion was 

observed irrespective of the base on the complementary strand. However, DNA trapping 

studies showed that the Sp lesion in double-stranded DNA was recognized by the NEIL2 

enzyme. NEIL1 and NEIL2 both showed a high degree of cleavage activity for Gh and 

Sp lesions in single-stranded DNA. Significant cleavage of the 8-oxoG lesion, in either 

single- or double-stranded DNA substrates, was not observed for either NEIL enzyme.

In addition to these results, data is shown to help prove the existence of these 

further oxidized lesions in a mammalian system. The formation of these lesions has been 

established in vitro and bacterial systems, but they have yet to be extended to mammalian 

systems. It is known that the OGGI enzymes repair 8-oxoG lesions and the majority of 

this chapter will establish that the mammalian NEIL1 and NEIL2 genes cleave the Sp and 

Gh lesions formed in DNA that has been exposed to chromium. Some preliminary data 

will be shown that examines the repair kinetics of the 8-oxoG and Sp lesions by 

mammalian cell extracts, specifically HeLa nuclear extracts. The HeLa cell line was 

originally derived from epitheloid carcinoma tissue from a human donor. This initial data 

will illustrate the availability of the mammalian tissues extracts to recognize and cleave 

these lesions from synthetic oligonucleotides. This study could easily be expanded to 

study nuclear extracts prepared from mOGG-/- mice and NEIL1 knockdown mice for
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their ability to repair the further oxidized lesions, as well as the toxicity and mutagenicity 

of chromium in a relevant mammalian repair-deficient system.

3.2 Formation and HPLC Separation of Gh and Sp

Reaction of the Cr(V)-Salen complex with the 22-mer 8-oxoG containing 

oligonucleotide demonstrated the formation of the further oxidized products of 8-oxoG, 

specifically spiriminodihydantoin (Sp) and guanidinohydantoin (Gh). These lesions can 

be distinguished from the original 8-oxoG product by separating the different lesions on a 

HPLC system. As shown in the HPLC chromatogram in Figure 3.1, the formation of 

oxidized products is observed in the reaction between 100 pM DNA and 800 pM Cr(V)- 

Salen in 10 mM phosphate buffer at pH 7.0 after a 20 min incubation at room 

temperature. The elution profile monitored at 260 nm showed two primary oxidation 

products from the reaction of 8-oxoG and Cr(V)-Salen as well as an unreacted 8-oxoG 

peak. The five peaks in the reaction were collected, ethanol precipitated, and lyophilized 

to dryness. Electrospray ionization mass spectrometry, ESI-MS, in negative ion mode

was performed and mass differences for the oxidized species were calculated as

00previously described. Peak 3 was found to be the unoxidized 8-oxoG containing 

oligonucleotide as expected by their coelution on the HPLC system. The first two peaks 

(Peaks 1 and 2) were found to give identical M-10 mass changes suggesting that they are 

structural isomers or tautomers of the same oxidized product. The identity of the 

oxidized products has been determined to be guanidinohydantoin and its isomer 

iminoallatoin from the corresponding mass change based on literature precedent24 for the 

formation of products observed with Ir(IV) treatment of the 8-oxoG nucleoside and 8- 

oxoG containing oligomers. Peak 4 in Figure 3.1 corresponds to a M +16 shift. This
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mass shift is characteristic of a Sp containing oligonucleotide and was consistent with 

that observed for treatment of the 8-oxoG nucleoside with the Cr(V)-Salen complex.22

DAD1 A, Sig=268,4 Ret=550,100 (KMJUN04\6-2_4.!
Norm.

140

120

100

80

60

40

20

mir

Figure 3.1: HPLC chromatogram of the 8-oxoG-containing oligonucleotide reacted with 
Cr(V)-Salen. Peaks 1 and 2 show the formation of guanidinohydantoin (Gh), and its 
isomer iminoallatoin. Peak 3 shows the unreacted 8-oxoG. Peak 4 corresponds to the 
formation of spiroiminodihydantoin (Sp). Peak 5 is an oxidized product that has yet to be 
identified.

Cr(V)-Salen at room temperature does not preferentially form either Gh or Sp, but 

instead gives a mixture of the these further oxidized lesions (Figure 3.2) that are readily 

separated from one another, and any unreacted 8-oxoG containing oligonucleotide, by 

HPLC as described above. Gh and la are isomers that readily interconvert and are treated 

as a single lesion. These lesions were placed at nucleotide positions 7 or 9 in the upper 

DNA strand. No position dependent differences in recognition and cleavage of the 

modified DNA by the NEIL enzymes were observed.
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Figure 3.2: Oxidation of 8-oxoG by Cr(V)-Salen produces the lesions 
guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp). Previous studies have shown 
that Gh equilibrates with an isomeric form, iminoallantoin (la). The highlighted atom in 
the structure denotes the sp3 carbon.

3.3 NEIL1 and NEIL2 Affinity for 8-oxoG, Gh, and Sp in ssDNA

NEIL1 and NEIL2 have been shown to catalyze the removal of 5-OHU, TG, 

FapyG, and FapyA from duplex, single-stranded, and bubble-structure oligonucleotides. 

Their ability to recognize and excise hydantoin products such as Gh/Ia and Sp, that arise 

from further oxidation of 8-oxoG, has not previously been examined. NEIL1 and NEIL2 

recognition and cleavage assays for Gh/Ia, Sp, and 8-oxoG lesions in single-stranded
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DNA were carried out using a 22-nt oligonucleotide containing an oxidized lesion at 

either position 7 or 9 from the 5’-end as indicated in the figure legend. An unmodified 

oligonucleotide containing a guanine instead of an oxidized lesion was used as a negative 

control in these reactions. The four different single-stranded nucleotide substrates 

(control/unmodified, Gh, Sp, or 8-oxoG) were reacted with NEIL1 or NEIL2 and aliquots 

were removed for cleavage analysis at 0, 15, 30, and 60 min (Figs. 3.3 and 3.4). The zero 

time point in these figures refers to the removal of the first aliquot of the reaction mixture 

for cleavage analysis, which was generally less than 1 min. As expected, the 

control/unmodified oligonucleotide showed no cleavage with the addition of either 

NEIL1 or NEIL2 (Figs. 3.3A, 3.4A). The single-stranded 8-oxoG containing oligo 

showed very slight strand cleavage with NEIL1 (Fig. 3.3B), while NEIL2 showed no 

recognition and cleavage for the 8-oxoG substrate (Fig. 3.4B) over the 60 min time 

course. With the Sp and Gh modified 22-nt substrates, two product fragments were 

resolved by denaturing polyacrylamide gel electrophoresis. The faster migrating product 

band resulting from cleavage by NEIL1 and NEIL2 was assigned as the 8-elimination 

product (Figures 3.3C and D, 3.4C and D). The slower migrating cleavage bands in these 

reactions were assigned as the p-elimination products (Figures 3.3C and D, 3.4C and D). 

The basis for the assignment of the elimination products are given in Figure 3.5. NEIL2 

showed mainly 8-elimination when excising the Sp containing oligonucleotide although a 

smaller amount of P-elimination product was also observed. The Gh modified 

oligonucleotide showed all 8-elimination products in this same assay.
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(A) Control; NEILl <B> 8-oxoG; NEIL1
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(C)Gh/la; NEILl
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8- product

Figure 3.3: Cleavage of oxidatively modified ssDNA by the BER enzyme 
NEILl: (A) control/unmodified (no lesion); (B) 8-oxoG modified ss-oligo; (C) Gh 
modified ss-oligo; (D) Sp modified ss-oligo. In each gel, reactions were 
performed at 37 °C with 500 nM of DNA, with the lesion positioned at the seventh 
nucleotide, and 30 nM of NEILl with time points of 0, 15, 30, and 60 minutes.
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Figure 3.4: Cleavage of oxidatively modified ssDNA by the BER enzyme 
NEIL2: (A) control/unmodified (no lesion); (B) 8-oxoG modified oligo; (C) Gh/Ia 
modified oligo, and (D) Sp modified oligonucleotide. In each gel, reactions were 
performed at 37 °C with 500 nM DNA (with the lesion positioned at the seventh 
nucleotide for 8-oxoG and Gh and at the ninth nucleotide for Sp), and 30 nM 
NEIL2 with time points of 0, 15, 30, and 60 minutes.

The amount of cleavage products formed at the 60 min time point was quantified 

using densitometry. NEIL1 was found to catalyze the removal of approximately 45% of 

both Gh and Sp lesions from the single-stranded oligonucleotide after 60 min. NEIL2 

showed a higher degree of cleavage activity for both the Gh and Sp lesions than NEILl. 

Even at the shortest incubation time, 15 min, NEIL2 was able to excise nearly 100% of 

both Gh/Ia and Sp lesions from the single-stranded oligonucleotide (Figure 3.4C, D).

Assignment of p-elimination and 8-elimination termini from these reactions was 

carried out by band alignment with BER glycosylases that have established cleavage 

mechanisms (Figure 3.5). The glycosylase hOGGl shows only P-lyase activity when
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cleaving an 8-oxoG modified double-stranded oligonucleotide (Figure 3.5; Lane 1). This 

allowed assignment of the slower migrating fragment of cleaved DNA from NEIL1 and 

NEIL2 reaction with Gh and Sp modified double-stranded substrates as the P-elimination 

product (Figure 3.5; Lanes 4 and 8). Addition of Fpg, which has p/8 lyase activity, to the 

reaction mixture after a 2 hour incubation with the appropriate NEIL enzyme showed the 

formation of the faster migrating 5-elimination product (Figure 3.5; Lanes 3, 5, 7, 9).

8-oxoG
C

Gh/Ia

OGGI Mill. I
t •»

—

)
p.: M i l . :  +I-P-

4 5

4m m

C Sp
M.l l . l  - ! p i -  Nl II :
6 7 8

-  •

p- product 

6- product

Figure 3.5: Determination of cleavage termini through band alignment with known 
glycosylases. Lane 1, 8-oxoG modified oligo treated with hOGGl; Lane 2, Gh 
modified oligo treated with NEIL1; Lane 3, Gh modified oligo treated with NEIL1 + 
Fpg; Lane 4, Gh modified oligo treated with NEIL2; Lane 5 Gh modified oligo 
treated with NEIL2 + Fpg; Lane 6, Sp modified oligo treated with NEIL1; Lane 7,
Sp modified oligo treated with NEIL1 + Fpg; Lane 8, Sp modified oligo treated with 
NEIL2; Lane 9, Sp modified oligo treated with NEIL2 + Fpg. All reactions were 
incubated with the appropriate glycosylase(s) for 3 hr at 37 °C using 500 nM DNA 
with the lesion positioned at the seventh nucleotide, and 30 nM repair enzyme. The 
Fpg in lanes 3 ,5 ,7 , and 9 was added after a 2 hr incubation with the NEIL enzymes.
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3.4 NEIL1 and NEIL2 Affinity for 8-oxoG, Gh, and Sp in dsDNA

The ability of NEIL 1 and NEIL2 to recognize and cleave Gh and Sp in duplex 

DNA was determined using a 22 bp duplex oligonucleotide containing an X:Y base pair 

(where X was G, 8-oxoG, Gh, or Sp and Y was C, A, T, or G) at the same sites as that for 

the single-stranded oligonucleotides used in the studies described above. The X- 

containing strand was 5’-32P-end-labeled prior to annealing to the complementary strand. 

The duplexes were incubated with NEIL1 or NEIL2 and aliquots removed for analysis by 

gel electrophoresis at 0, 15, 30, and 60 minute time points. The control/unmodified 

oligonucleotide showed no recognition and excision in our assay system by either NEIL1 

or NEIL2 and only slight cleavage of the 8-oxoG lesion containing duplex DNA was 

observed under our conditions.

Reaction of Gh and Sp containing double-stranded oligonucleotides with NEIL1 

led to the formation of cleavage bands at the site of the lesion. Once again, the major, 

faster migrating band was identified as the 8-elimination product and the slower moving 

band was assigned as the P-elimination product (Figure 3.6A-D) through termini 

alignment as described in Figure 3.5 previously. NEIL1 was found to efficiently 

recognize and excise the Gh and Sp lesions opposite all four natural DNA bases. 

However, differences in cleavage efficiency were noted for both the Gh and Sp, 

dependent upon the identity of the base opposite the lesion. NEIL1 showed the greatest 

excision efficiency for both the Gh and Sp lesions when opposite a thymine or adenine 

(~70% after 60 min), while the lowest amount of excision was observed when the Sp and 

Gh lesions were paired with a cytosine (-45% at 60 min). Overall, NEIL1 demonstrated 

better cleavage activity for both lesions in double-stranded versus single-stranded DNA.
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Figure 3.6: Cleavage assay of oxidatively modified duplex DNA with NEIL1 to 
determine substrate affinity for Gh and Sp opposite the four natural bases, figures A- 
D. Reactions were carried out at 37 °C using a DNA concentration of 500 nM, with 
the lesion positioned at the seventh nucleotide for Gh and at the ninth nucleotide for 
Sp, and a NEIL1 concentration of 30 nM with time points of 0, 15, 30, and 60 min. 
The C above the first band in each gel represents the control lane when no enzyme is 
present.

In contrast with the results obtained with NEIL1, NEIL2 was able to recognize 

and cleave Gh opposite all four DNA bases, but only a minor amount of cleavage was 

observed when NEIL2 was reacted with the Sp containing strand opposite any of the four 

bases (Figure 3.7A-D). Cleavage efficiency of Gh by NEIL2 was again dependent upon 

the base opposite the lesion. The Gh lesion was most efficiently cleaved by NEIL2 when 

paired opposite thymine and cytosine (-60% at 60 min) while it was least efficiently 

cleaved when opposite guanine (-45% at 60 min). Interestingly, NEIL2 appeared to
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catalyze the removal of the lesions by a P-elimination step in double-stranded DNA under 

our conditions (Figure 3.7A-D), in contrast with P- and 8-elimination products observed 

in single-stranded DNA substrates.
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C 0 15 3060
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Figure 3.7: Cleavage assay of oxidatively modified duplex DNA with NEIL2 
to show substrate affinity for Gh and Sp opposite the four natural bases, figures 
A-D. Reactions were carried out at 37 °C using a DNA concentration of 500 
nM, with the lesion positioned at the seventh nucleotide for Gh and at the ninth 
nucleotide for Sp, and a NEIL2 concentration of 30 nM with time points of 0, 
15, 30, and 60 minutes. The C above the first band in each gel represents the 
control lane when no enzyme is present.

A trapping assay was used in this study to help identify glycoyslase/AP lyase 

activities of NEIL1 and NEIL2 for the oxidized lesions, Sp and Gh/Ia. The control 

(guanine) and lesion containing oligonucleotides were tested for trapping with both 

enzymes with DNA in single- and double-stranded forms. NEIL1 and NEIL2 formed
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trapped complexes with Sp and Gh containing substrates in both single-stranded and 

duplex DNA, but little trapping of the enzyme was observed with the 8-oxoG and no 

trapping was observed for the control oligos (Figure 3.8A and B). The low level of 

trapping of the 8-oxoG lesion is in good agreement with the low level of cleavage 

observed with NEIL1 and NEIL2 towards this lesion. Interestingly, a significant amount 

of DNA/enzyme trapping occurred between the duplex Sp containing oligonucleotide and 

NEIL2 (Figure 3.8B, Lane 6) even though NEIL2 showed negligible cleavage of Sp 

when in duplex DNA. Cytosine was the only base tested opposite the lesion in the 

duplex DNA.

(A) NEILI

Gh/Ia(control) 8-oxoG Sp

pH p H Hp
lls SS ds >sS t l \  Js

NEIL2
G

(control) 8-oxoG

pH pH
Sp Gh/Ia

p H p H
ds ss ds ss <fe ss ds ss

Trapped
complex

Free DNA

Figure 3.8: Analysis of NEILI and NEIL2 trapped complexes with 
oligonucleotides containing guanine (control), 8-oxoG, Sp, or Gh/Ia. (A) NEILI 
reacted with double- and single-stranded control (Lanes 1 and 2), double- and 
single-stranded 8-oxoG (Lanes 3 and 4), double- and single-stranded Sp (Lanes 5 
and 6), and double- and single-stranded Gh/Ia (Lanes 7 and 8). (B) NEIL2 reacted 
with double- and single-stranded control (Lanes 1 and 2), double- and single­
stranded 8-oxoG (Lanes 3 and 4), double- and single-stranded Sp (Lanes 5 and 6), 
and double- and single-stranded Gh/Ia (Lanes 7 and 8).
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In summary, NEILI and NEIL2 were able to efficiently recognize and cleave Gh 

opposite the four different DNA bases with relatively similar efficiencies but only NEILI 

showed efficient recognition and excision of the Sp lesion in double-stranded DNA. 

NEIL2 did not significantly cleave the Sp lesion from double-stranded DNA under our 

reaction conditions regardless of the base opposite the lesion even though this lesion in 

duplex DNA showed good recognition through our DNA trapping studies. This is in 

contrast to the almost 100% cleavage observed with NEIL2 when the Sp lesion was 

present in single-stranded DNA.

3.5 HeLa Nuclear Extract Repair Proficiency

The ability of these lesions to be recognized and removed from an oligonucleotide 

strand by base excision repair enzymes from a cell lysate solution was also tested. HeLa 

nuclear extract solutions were used to determine the repair proficiency of the cell line 

versus the oxidized guanine lesions that were formed in an oligonucleotide strand by 

chromium exposure. Oligonucleotide strands containing either 8-oxoG, Gh, or Sp were 

incubated with HeLa nuclear extracts at 37 °C for 3 hrs. Samples were then run on a 

denaturing 7M urea gel to determine the extent of cleavage of the oxidized guanine lesion 

from the oliognucleotide strand (Figure 3.9). As shown in Figure 3.9, both the 8-oxoG 

and Sp containing oligonucleotides were cleaved to appreciable amounts at the 3 hour 

time point. Since hOGGl has been shown to have very little affinity for the Sp lesion, it 

is plausible to credit this cleavage of the Sp lesion to the newly identified NEIL proteins.
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Figure 3.9: Analysis of repair proficiency of HeLa nuclear extracts with double 
stranded oligonucleotides containing the 8-oxoG and Sp lesions. (A). 8-oxoG 
containing oligonucleotide reacted with HeLa nuclear extract for 3 hrs at 37 °C. 
Samples were taken at 4 different time points. Lane 1, 0 time point; Lane 2, 1 hr; 
Lane 3, 2hrs; Lane 4, 3 hrs. (B). Sp containing oligonucleotide reacted with HeLa 
nuclear extract for 3 hrs at 37 °C. Lane 1, 0 time point; Lane 2, 1 hr; Lane 3, 2 hrs; 
Lane 4, 3 hrs. All samples were heated to 95 °C in formamide loading buffer 
before being run on a 15% 7M urea gel and visualized by autoradiography.

3.6 Discussion and Conclusions

While 8-oxoG is a common biomarker of oxidative damage, its sensitivity 

towards further oxidation necessitates the need to study the subsequent formation of 

further oxidized species. The further oxidation of 8-oxoG can be initiated by a number of 

redox-active compounds including transition metals, ionizing radiation, and 

photochemical reactions. One redox-active transition metal capable of further oxidizing 

the 8-oxoG lesion is the cationic Cr(V)-Salen complex which is thought to mimic high- 

valent chromium intermediates formed during the cellular reductive metabolism of the
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human carcinogen chromate. The mechanism by which Cr(VI) induces cancer is 

unknown although a significant body of evidence suggests that oxidative damage to DNA 

is a critical step. During the reduction of Cr(VI) to Cr(III), formation of transient and 

highly oxidizing Cr(V) oxidation states of this metal have been observed.43 It has been 

postulated that these transient high-valent states of chromium are responsible for much of 

the oxidative damage observed in Cr(VI)-treated DNA.

We have identified and characterized the formation of Gh and Sp as the two major 

products of 8-oxoG oxidation when reacted with Cr(V)-Salen in vitro (Fig. 3.1).22 The 

failure to repair these oxidized lesions of guanine, prior to replication, have been shown 

to lead to mutations. This oxidative damage to single DNA bases is recognized and 

repaired by the base excision repair (BER) pathway.31 The ability of oxidized base 

specific DNA glycosylases to repair Gh and Sp residues in DNA has been thoroughly 

studied in E. coli42, but to date no mammalian homolog of these glycosylases had been 

identified that have a substrate specificity for these further oxidized lesions of 8-oxoG.

In this chapter, we have described the relative affinity of the newly identified mammalian 

DNA glycosylases, NEILI and NEIL2, to recognize and cleave the further oxidized 

lesions of Gh and Sp.

The substrate preferences for mammalian NEILI and NEIL2 DNA glycosylases 

are still being determined. NEILI and NEIL2 belong to the Fpg/Nei family of enzymes 

based on their reaction chemistry and homology to the bacterial enzymes. NEILI and 

NEIL2 both recognize the further oxidized lesion Gh in double- and single-stranded 

DNA. This result is of some interest since many glycosylases are dependent on the 

complementary strand to help identify and repair the lesion in question. The Sp lesion
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gives contrasting results between the two enzymes. NEILI efficiently cleaved Sp from 

single- and double-stranded DNA while NEIL2 was able to cleave the Sp containing 

DNA only when it was in the single-stranded form.

NEIL2 has P-lyase activity that makes it more like hOGGl than Fpg and Nei in 

terms of its backbone cleavage. Examination of the active site of hOGGl revealed a 

catalytic lysine poised at the 3’-hydroxyl and the cleaved 8-oxoG nucleobase remains 

poised in the active site such that it can hydrogen bond to the Ne of the catalytic lysine, 

and the 0 4 ’ of the sugar, to act as a catalytic acid/base in the P-lyase cascade.44 The 

cleaved residue is held in position by base stacking interactions with a phenylalanine 

residue and hydrogen bonding between the N1 of 8-oxoG and a glutamine residue. The 

profound loss of planarity in the Sp lesion would preclude both of these interactions 

thereby diminishing the capacity of Sp to assist in the catalytic acid/base cascade. It may 

also be that the comparatively bulky Sp structure occludes the backbone preventing 

access to this site by the catalytically important amino acid residues required for lyase 

activity. These conclusions are highly speculative in the absence of detailed structural 

studies of the NEIL2 protein active site. However, we anticipate that the Sp lesion may 

prove to be a highly informative substrate with which to probe the NEIL2 active site.

The strong preference for this enzyme for single-stranded DNA, however, infers that its 

biological role may lie more with single-stranded substrates, either in bubble structures or 

within the transcription coupled repair system.

NEILI retains its P-, 8-lyase activity when acting upon double-stranded DNA, 

which it appears to cleave with slightly higher affinity than single-stranded DNA. In this 

regard, its activity appears more similar to the bacterial Nei enzyme after which it was
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named. The trapped DNA-Nei complex reveals an extensive arg-lys hydrogen bonding 

network to the C l’-carbon and to the phosphate on both sides of the lesion that may 

contribute to the |3-, 8-lyase activity of this enzyme.45 Interestingly, Zharkov et al could 

not obtain a structure of the enzyme recognizing the lesion even after soaking crystals 

with lesion, implying that the active site has little affinity for the lesion upon cleavage 

and that lyase activity is dependent only upon the acid/base catalysis of the protein amino 

acids 45 Doublie et al identified arginine residues within the putative active site of NEILI 

that could potentially be catalytic.46 However, mutation of these residues to alanine 

mitigated glycoylase activity without impacting the lyase activity of the enzyme. The 

basis of the lyase activity of the NEILI enzyme remains to be determined.

Structural perturbations of the DNA may play an important role in damage 

recognition by NEILI and NEIL2. The oxidation of 8-oxoG to form the Sp lesion 

generates a tetrahedral, sp3 carbon within the normally planar nucleic acid base ring 

structure (Fig. 3.2). This conformational change would be expected to disrupt normal 

base pair stacking in duplex DNA and significantly distort the DNA helix. This 

distortion could play a substantial role in the BER enzymes ability to recognize and 

cleave Sp lesions formed within DNA. While oxidation of 8-oxoG to form Gh also 

generates a tetrahedral, sp3 carbon, free rotation about the tetrahedral atom may allow the 

modified nucleic acid base to remain relatively planar in duplex DNA and should cause 

less distortion of the DNA helix than Sp. Interestingly, formation of an 8-oxoG within 

duplex DNA has shown little or no distortion of the normal B-form DNA helix by X-ray 

crystallography.47 These data suggest that a structural basis may exist for the recognition 

and cleavage of Sp and Gh in DNA.
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NEILI and NEIL2 have both shown a preference for oxidized pyrimidine bases in
OZ OO A f \

DNA. ' ’ However, several groups have also shown a weak but most likely significant

o z  o o  •2Q
activity against 8-oxoG:C ' , 8-oxoG: A pairs as well as 8-oxoG in single-stranded

9̂bubble structures. NEILI and NEIL2 possess the ability to recognize and cleave the Sp 

and Gh lesions in single- and double-stranded DNA, with the ability to act on lesions in 

single-stranded DNA being reported previously only for uracil-DNA glycosylase.48 This 

ability to cleave lesions in ssDNA, specifically the Gh and Sp lesions, could implicate the 

NEIL glycosylases as being involved in different repair pathways.

The formation of 8-oxoG, Sp and Gh have been established in vitro and bacterial 

systems, but specifically the formation of Sp and Gh need to be extended into a 

mammalian system. Oligonucleotides containing 8-oxoG and Sp were incubated with 

HeLa nuclear extract, which has been shown to be repair proficient. After a 3 hour 

incubation, significant cleavage was visible in both lesion containing oligoncleotides 

(Figure 3.9). This preliminary data supports the hypothesis that Sp formation could occur 

from an oxidative event in a mammalian system. Immunoprecipitation and knockdown 

studies could be used to further support these preliminary findings. HeLa nuclear extract 

could be depleted of hOGGl and NEILI by immunoprecipitation to determine if the 

amount of cleavage of the lesions is diminished with the lack of these two repair proteins. 

This study could also be expanded to study nuclear extracts prepared from mOGG-/- 

mice and NEILI knockdown mice that have and have not been exposed to an oxidative 

event, such as chromium exposure, for their ability to repair these further oxidized 

guanine lesions.
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The thermodynamics of base oxidation coupled with the recent discovery of “hole 

migration” for redox chemistry in DNA strands suggest that 8-oxoG would not be the 

terminal oxidation product that arises within a cell following an oxidative event. If these 

further oxidized lesions of 8-oxoG are common in cellular systems, and can be 

recognized and cleaved by BER enzymes NEILI and NEIL2, these results could help to 

explain the mild phenotypes observed in Oggl_/" and Nthl-/" mice. These results may 

also shed light on the mechanism of oxidative DNA damage by the human carcinogen 

chromate and the resulting pathways for repair of this damage.

3.7 Experimental Procedures

3.7.1 Forming Guanidinohydantoin and Spiroiminodihydantoin

Cr(V)-Salen synthesis: The chromium complex N,N-ethylenebis(salicylidene- 

animato)oxochromium(V), [Cr(Salen)(H20)2]PF6, containing the N,N- 

bis(salicylidene)ethylenediamine (Salen) ligand was sysnthesized in the trivalent 

oxidation state as the hexafluorophosphate salt, using the method of Coggon and 

McPhail.49 Reddish brown needles crystallized from water were analyzed by UV/vis 

spectroscopy in acetonitrile, yielding absorbance spectra, extinction coefficients, and 

purity comparable to those reported previously for this complex.49 Stock solutions of the 

Cr(V)-Salen complex in dry acetonitrile were prepared by dissolving an equimolar 

amount of the Cr(III)-Salen complex with the oxidant iodosylbenzene.50 Formation of 

the Cr(V) oxidation state was confirmed by electron paramagnetic resonance 

spectroscopy.51
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Site-specific formation of guanidinohydantoin and spiroiminodihydantoin in 

DNA: The Gh or Sp lesions were formed at specific sites within the oligonucleotide by 

reacting Cr(V)-Salen with the 8-oxoG containing oligonucleotide. The 8-oxoG 

containing oligonucleotides were purchased from TriLink BioTechnologies and the 

complementary unmodified strands were purchased from Integrated DNA Technologies. 

The oligonucleotide sequences used were: d(5’-AGTTGAXiGX2GACTTTCCCAGCC- 

3’) with complement d(5 ’ -GGCTGGG A A AGTC Y 2C Y1TC A ACT-3 ’), where Xi and X2 

were either 8-oxoG or G, and Yi or Y2 were C, A, G, or T. Reactions between the Cr(V)- 

Salen complex and the oligonucleotides were carried out in lOmM sodium phosphate 

buffer (pH 6.0) in 50 pL volumes. A 20 mM stock solution of the Cr(V)-Salen in dry 

acetonitrile was prepared fresh, and a typical reaction mixture contained 10-100 pM 

DNA and 800 pM Cr(V)-Salen. Reactions were allowed to proceed at room temperature 

for 20 minutes prior to HPLC purification.

HPLC analysis of oxidation products: Residual chromium was removed from 

the reaction mixture using a BioRad Micro Bio-Spin P6 chromatography column. The 

chromium-treated DNA was reinjected on the HPLC using the same separation 

conditions as described above. Eluting peaks corresponding to Gh and Sp were collected, 

evaporated to near dryness, and residuals salts removed using a second BioRad P6 

column and eluting the DNA in deionized water. The modified oligonucleotides were 

resuspended in an aqueous buffer containing 2.5 mM imidazole and 2.5 mM piperidine. 

Mass spectral characterization of purified nucleoside oxidation products was carried out 

on these samples with addition of 10% aqueous MeOH. ESI-MS spectra were obtained 

on a Micromass Quattro II tandem mass spectrometer. The oligomers were introduced
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into a QTOF mass spectrometer by direct infusion via a syringe pump at a flow rate of 5 

pL/min. The capillary voltage was set to -2200V, and ion signals were detected in the 

negative ion mode. The initial spectra were charge-state deconvoluted using the 

transform algorithm featured in the Micromass Mass Lynx version 3.4 software package.

Substrate DNA preparation. A 850 pmol reaction of the modified 

oligonucleotide was 5’- P-end labeled with T4 polynuleotide kinase according to the

•39
manufacturer’s protocol. Excess P-y-ATP was removed with a BioRad Micro Bio-Spin 

P6 column prior to use. The labeled oligonucleotide was annealed to the complementary 

strand, which was added in slight excess (15-20%). The annealing step was performed in 

a 10 mM Tris-HCl (pH 7.4) buffer and was heated to 95 °C and then slowly cooled over a 

3 hour period. A 5’-labeled oligonuclotide, either single- or double-stranded, was frozen 

as a stock solution and the appropriate concentration was removed for the subsequent 

cleavage assays.

3.7.2 NEILI and NEIL2 Cleavage Assay

Purification of NEILI and NEIL2. Murine NEILI and NEIL2 purified 

enzymes were a gift from Dr. Thomas Rosenquist of the State University of New York 

(SUNY), Stoneybrook. The murine NEILI and NEIL2 enzymes containing C-terminal 

his6-tags were cloned, expressed and purified as described previously 40.

DNA recognition and cleavage assays with NEILI and NEIL2. Double and 

single stranded oligonucleotides containing 8-oxoG, Gh, or Sp were analyzed for 

recognition by the NEILI and NEIL2 enzymes. Solutions of oligonucleotides (500 nM) 

were reacted with 30 nM NEILI or NEIL2 in a reaction buffer consisting of 20 mM Tris- 

HCl (pH 8.0), 1 mM EDTA, 1 mM DTT, and 100 pg/mL BSA. Reactions were carried
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out at 37 °C and 5 pL aliquots were removed at 0, 15, 30, and 60 min for analysis of 

DNA cleavage. At each time point the samples were quenched by the addition of an 

equal volume (5 pL) of formamide denaturing loading dye (10 mL formamide, 10 mg 

xylene cyanol FF, and 10 mg bromophenol blue) that was preheated to 95 °C. The 

samples mixtures were placed at 95 °C for 4 min before loading on a 15% TBE, 7M urea 

pre-cast BioRad mini-gel. Gels were run in Tris-Borate-EDTA buffer for -40 min at 

180V. The bands were analyzed by autoradiography and the faster migrating bands from 

glycosylase recognition and excision were quantified by densitometry using a BioRad 

GS-800 Claibrated Densitometer with the QuantityOne Software package.

Analysis of trapped DNA complexes by NEILI and NEIL2. 32P-labeled 

single- and double-stranded oligonucleotides (500 nM) containing guanine (control) or 

the 8-oxoG, Sp or Gh lesions were incubated with either NEILI or NEIL2 enzymes (30 

nM) in 60 pL reaction buffer (20 mM Tris-HCl (pH 8.0), 1 mM EDTA, 1 mM DTT, and 

100 pg/mL BSA) in the presence of 50 mM NaCNBH3 at 37 °C for 90 min. A 10 pL 

trapped enzyme/DNA complex was removed and the reaction was topped with the 

addition of 15 pL of 2X SDS gel loading buffer. Samples were heated to 95 °C for 10 

min and flashed cooled. Samples were separated on a 12% SDS-PAGE gel with a 5% 

stacking layer and the DNA-protein complexes were visualized by autoradiography.

3.7.3 HeLa Nuclear Extract Assay

DNA excision repair catalyzed in vitro by HeLa Nuclear Extract. 32P-labeled 

double stranded oligonucelotides (1000 nM) containing guanine (control), 8-oxoG, or Sp 

lesions were incubated with HeLa nuclear extract (18 pg) in a PBS binding buffer (0.1 M 

phosphate, 0.15 M NaCl (pH 7.2)). The total reaction mixture (60 pL) was allowed to

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

react at 37 °C for up to 3 hours. 5 pL aliquots were taken at 0, 1, 2, and 3 hour time 

points. At each time point, samples were quenched with 5 pL of 95 °C formamide 

loading buffer (10 mL formamide, 10 mg xylene cyanol FF, 10 mg bromophenol blue). 

All samples were heated to 95 °C for 5 min previous to loading and flash cooled. The 

samples were run on a 15% TBE 7 M Urea mini gel at 250 V for 40 min and visualized 

by autoradiography.
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Chapter 4: The Formation and Cellular Accumulation of Spiroiminodihydantoin 

from Chromium Exposure

4.1 The Oxidation of Guanine by Cr(VI) and Ascorbate Forms 

Spiroiminodihydantoin

Further oxidation of the ubiquitous 7,8-dihydro-8-oxo-2’-deoxyguanosine (8- 

oxoG) lesion in DNA has been a recent topic of considerable interest. An ever increasing

1 9number of oxidants including photosensitizing agents , peroxynitrite , carbonate radicals 

3, and high valent metals such as Ir(IV) 4 and Cr(V)5 have all been observed to 

specifically react at 8-oxoG sites within duplex DNA to form further oxidized lesions. 

Previously, the reaction of Cr(V) complexes with single-stranded DNA containing the 8- 

oxoG lesion has shown further oxidation exclusively at the 8-oxoG site.5,6 The further- 

oxidized lesions formed in this reaction were determined to be spiroiminodihydantoin 

(Sp) and guanidinohydantoin (Gh).5

The Sp and Gh lesions show an enhanced polymerase arresting capability in 

comparison to the parent 8-oxoG lesion as well as significantly increasing levels of 

transversion mutation in vitro and in cellular systems.6'9 Significantly, these transversion 

mutations are the primary mutations observed in human lung tumors from chromate- 

exposed workers and in shuttle vector replication assays in Cr(VI)-treated mammalian 

cells.10’11 Recognition and excision of the Sp and Gh lesions in DNA in vitro have been 

shown to occur through the bacterial Nei (Endonuclease VIII) base excision repair (BER) 

enzyme 12 and as shown in chapter 3, through the mammalian NEIL (Nei-like) BER 

glycosylases.13 Whereas the NEIL glycosylases have a high affinity for recognition and
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cleavage of DNA containing Gh and Sp, they show almost no affinity for the 8-oxoG 

lesion. While the thermodynamics of 8-oxoG oxidation to the Sp and Gh lesions coupled 

with the demonstrated recognition of these lesions by endogenous BER enzymes argues 

for their formation in cellular DNA, the refractory nature of these lesions to detection has 

previously kept them from being observed in cellular systems.

On the basis of our previous results, we propose that the further oxidized products 

of guanine, Sp and Gh, are equally if not more common in Cr(VI) oxidation reactions 

with DNA than 8-oxoG itself and, being more mutagenic, may play a primary role in 

chromium-induced carcinogenesis. These lesions had yet to be observed by the direct 

oxidation of guanine in duplex DNA with any carcinogenic metal. In this study, we have 

reacted a duplex DNA oligonucleotide with sub-toxic cell culture concentrations of 

Cr(VI) and a molar excess of the reductant ascorbate. The site- and sequence-specificity 

of DNA oxidation in this reaction was monitored using PAGE sequencing, and lesion 

formation was determined by a combination of reductive trapping by BER enzymes, 

HPLC-ESI-MS and HPLC-ECD. Sequencing gels of the Cr(VI)/Asc oxidation showed 

preferential oxidation of guanine over the other nucleobases, with enhanced oxidation at 

5’ guanines in purine runs. Reductive trapping of modified DNA with NaCNBH3 and 

SDS-PAGE using base excision repair glycosylase specific to 8-oxoG and Sp (hOGGl 

and mNEIL2, respectively) showed that NEIL2 had a much greater affinity to the lesions 

being formed than hOGGl, suggesting that 8-oxoG was not the major lesion formed in 

this reaction.

Also on the basis of our in vitro studies, we hypothesize that Nei” deficient 

bacteria should show sensitivity, manifested as differential growth, toward the carcinogen
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chromate if lesions such as Sp are formed during the intracellular reduction of Cr(VI) to 

Cr(III). Furthermore, the Nei deficient cell lines should accumulate the Sp and Gh 

lesions within their genomic DNA that correlates with the observed growth inhibition. 

This study analyzed a series of BER deficient Escherichia coli (E. coli) for differential 

growth inhibition toward chromate with respect to their wild-type counterparts. The 8- 

oxoG mutants, (MutM-, MutY", and the MutMTMutY" double mutant), all demonstrated 

similar growth curves following chromate treatment to their matched wild-type 

counterparts. Only the Nei deficient E. coli (TK3D11) demonstrated a significant 

difference in growth with increasing doses of chromate over that of its wild type. The 

genomic DNA of the Nei" and the MutMTMutY- double mutant, with respect to their 

wild-type controls, was assayed for the formation of the Sp lesion and the putative 

intermediate of this lesion, 8-oxoG. These results are the first to show the formation of 

the Sp lesion intracellularly and suggest that further-oxidized lesions of guanine, such as 

Sp, may be the predominant lesion formed intracellularly and may explain the 

mutagenicity and carcinogenicity of this metal.

4.2 Formation of Oxidized Guanine Products by Cr(VI) and Ascorbate

Previously, this lab has shown that a model Cr(V) complex reacts specifically 

with 8-oxoG in single-stranded oligonucleotides to produce the further-oxidized lesions 

of Sp and Gh.5,6 In this present study, we chose to investigate whether one of these 

further oxidized lesions, Sp, could be formed directly from oxidation of guanine within 

normal duplex DNA. We also chose to determine whether these lesions could be formed 

from established Cr(VI) reduction parameters using the endogenous reductant ascorbate.
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We next used our parameters in a cellular system, specifically in various strains of 

Escherchia coli, to determine if the Sp lesion was being formed and to what extent from 

Cr(VI) exposure. This would be the first identification of a further oxidized guanine 

lesion in a cellular system.

Identification of guanine specific oxidation sites by Cr(VI)/Ascorbate in 

duplex DNA. Duplex DNA with the 32P-labeled upper strand sequence of 5’-AGT TGA 

GGG GAC TTT CCC AGC C-3’ was treated with concentrations of Cr(VI) ranging from 

3.1 to 50 pM and a 10-fold molar excess of ascorbate (31-500 pM). This range of Cr(VI) 

concentrations are commonly used in the treatment of mammalian cells in culture and, 

depending on the cell line, display toxicity profiles ranging from 0 to 100%.14,15 

Unidirectional uptake and reduction of Cr(VI) by A549 cells leads to low steady-state 

cellular exposure to Cr(VI), but cumulative exposures have been observed to be greater 

than 1 mM intracellular chromium (presumably as Cr(III)) from a 10 pM treatment of 

Cr(VI) in media.14 Reduction of Cr(VI) by ascorbate in the presence of the DNA was 

allowed to take place for a minimum of 1 hour, at which time absorbance measurements 

of Cr(VI) at 372 nm showed complete reduction to Cr(III). Piperidine treatment was 

used to specifically cleave the DNA at the site of the lesion formation. The results in 

Figure 4.1 show that treatment of DNA with Cr(VI)/ascorbate resulted in the formation of 

piperidine labile cleavage sites preferentially at guanines. Lanes 1 and 2 are untreated 

DNA controls, with and without piperidine, respectively, and show little background 

cleavage. Lane 3 is the Maxam-Glibert A/G lane used for sequence-specific cleavage 

comparisons with the Cr(VI)/Asc reactions. Lanes 4-8 are piperidine treated duplex 

DNA samples treated with Cr(VI)/Asc with lane four containing the highest
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concentration (50 [xM/ 500 pM) of Cr(VI)/Asc and decreasing to the lowest concentration 

in lane 8 (3.1 |xM/ 31 [xM). The oxidation of the duplex DNA oligonucleotide by 

Cr(VI)/Asc indicated that oxidation occurs almost exclusively at guanine and that 

guanines that are 5’ in a run of guanines (or 5’ in a run of purines such as G°) show 

enhanced oxidation (Figure 4.1). Similar reactions with ascorbate alone showed little or 

no cleavage of DNA upon piperidine treatment.

S’-AGT TGA G'gPq* Ĉ AC TTT CCC AGC C-3’

8

*

Figure 4.1:. Sequencing gel showing the concentration dependence and site- 
specificity of DNA oxidation by Cr(VI) and ascorbate. Lanes 1 and 2 are untreated 
DNA control with and without piperdine treatment, respectively. Lane 3 shows the 
Maxam-Gilbert G/A lane. Lanes 4-8 show the Cr(VI)/Asc treated DNA following 
piperdine cleavage in order of decreasing concentrations of Cr(VI)/Asc of (50/500, 
25/250, 12.5/125, 6.2/62, 3.1/31 [xM).
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4.3 Lesion Identification by Reductive Trapping of BER Glycosylases.

Oxidized base lesions are recognized by specific BER enzymes that initiate the 

repair process through base removal and formation of an abasic site. The BER enzyme 

forms a Schiff base intermediate at the C l’ of the damaged nucleotide sugar that can be 

covalently trapped as the stable amine using a suitable reductant such as sodium 

cyanoborohydride.16 BER glycosylases have affinities for a specific lesion or a subset of 

lesions, and reductive trapping can be used to identify the class of DNA lesions formed in 

the reaction. The human BER glycosylase hOGGl has shown specificity toward the

17recognition of a family of oxidized guanine residues including 8-oxoG in DNA. We 

have shown that the recently characterized BER enzymes, NEIL1 and NEIL2, recognize 

the further-oxidized lesion of guanine, spiroiminodihydantoin (Sp), but have little affinity 

for 8-oxoG (Results Ch.3).13 Duplex DNA containing a single 8-oxoG or Sp lesion was 

synthesized as described in Materials and Methods. Unmodified DNA, DNA containing 

a single 8-oxoG lesion, or DNA with a single Sp lesion was incubated with hOGGl, or 

NEIL2 and trapped with NaCNBIU. Figure 4.2 shows a typical gel shift obtained upon 

trapping of the glycosylases. The results show that NEIL2 was almost exclusively 

trapped to DNA containing the Sp lesion, and hOGGl was exclusively trapped to DNA 

containing the 8-oxoG lesion.

This same trapping system was used to analyze for specific glycosylases being 

produced from reactions of Cr(VI)/Asc treated duplex DNA. This analysis of lesion 

formation was carried out using 15, 25, and 50 pM Cr(VI) and a 10-fold excess of 

ascorbate. Each sample was incubated with NaCNBIU and hOGGl, NEIL1, or NEIL2 in 

a manner identical to that in Figure 4.2. Trapping with NEIL1 and NEIL2 under these
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conditions exhibited a distinct gel shift, whereas hOGGl showed essentially no trapping 

(Figure 4.3). Since hOGGl is relatively specific for the 8-oxoG lesion and NEIL1 and 

NEIL2 have little or no affinity for 8-oxoG, this result suggested that the majority of the 

lesions formed from the oxidation of duplex DNA by Cr(VI)/Asc was not 8-oxoG but a 

further oxidized guanine lesion such as Sp.

k .

I  \

hOGGl

Figure 4.2: SDS-PAGE gel showing lesion-specific reductive trapping of 8-oxoG and 
Sp in duplex DNA by the BER glycosylases NEIL2 and hOGGl. Lane 1, 8-oxoG + 
NaCNBH3 control; lane 2, Sp + NaCNBH3 control; lane 3, unmodified DNA + 
NaCNBH3 control; lane 4, 8-oxoG-contining DNA + NEIL2 + NaCNBH3; lane 5, Sp- 
containing DNA + NEIL2 + NaCNBH3; lane 6, unmodified DNA + NEIL2 + 
NaCNBH3; lane 7, 8-oxoG-c:ontaining DNA + hOGGl + NaCNBH3; lane 8, Sp- 
containing DNA + hOGGl + NaCNBH3; lane 9, unmodified DNA + hOGGl + 
NaCNBH3.
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Figure 4.3: Trapped BER glycosylases in Cr(VI)/Asc-oxidized duplex DNA. 
Lanes 1-3, 50/500 pM Cr(VI)/Asc with NEIL1, NEIL2, and hOGGl respectively; 
lanes 4-6, 25/250 pM Cr(VI)/Asc with NEIL1, NEIL2, and hOGGl respectively; 
lanes 7-9, 15/150 pM Cr(VI)/Asc with NEIL1, NEIL2, and hOGGl respectively.
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4.4 Detecting Sp Formation in a Cellular System

Growth inhibition of BER deficient E. coli strains as a function of chromate 

treatment. This study focused on a set of known BER deficient bacterial cell lines that 

included the MutM", MutY”, the MutMTMutY” double mutant, and a Nei deficient E. 

coli cell line. The MutM" (CM1319), MutY" (CM 1307), and the MutMTMutY" double 

mutant (CM1322) showed no change in growth with respect to the wild-type strain 

(WP2) as Cr(VI) concentration was increased. A representative growth curve for the 

single and double mutants vs its wild-type cell line are shown in Figures 4.4 and 4.5.

In contrast, the Nei deficient strain (TK3D11) showed a significant change in 

growth inhibition over that of its wild-type control (CSR06) following chromate 

treatment (Figure 4.6). Growth of the Nei deficient strain at the 8 hr time point for the 

100 pM and 250 pM Cr(VI) treatments was observed to be inhibited by 27 and 67% with 

respect to its wild-type control strain. To our knowledge, this the first example of a BER 

deletion mutant to show differential growth sensitivity toward Cr(VI).

HPLC-ESI-MS analysis for the Sp lesion in genomic DNA of BER deficient 

E. coli. The ability of the Nei deficient E. coli (TK3D11) and the MutMTMutY" double 

mutant (CM 1322) to accumulate the Sp lesion in genomic DNA in response to chromate 

treatment was studied by HPLC-ESI-MS. An isotopically labeled 180-Sp internal 

standard allowed the identification and quantification of 160-Sp in digested DNA samples
1 Q

as our group has described previously. Accumulation of Sp in the genomic DNA was 

assessed in high density cell cultures (OD6oo= 0.5) of the Nei deficient (TK3D11), the 

MutMTMutY" double mutant (CM 1322), and their matched wild-type controls treated 

with 250 and 500 pM chromate. HPLC-ESI-MS analysis of the digested genomic DNA
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1 o
for Sp formation, using the O-Sp internal standard for quantification showed a dose- 

dependent accumulation of Sp with increasing chromate concentration only in the Nei 

deficient (chromate sensitive) E. coli (Figure 4.7). Accumulation of the Sp lesion in the 

Nei deficient E. coli was observed to be approximately 20-fold greater than that observed 

for its wild-type counterpart (CSR06). The MutMTMutY- 8-oxoG double mutant 

(CM 1322), which is Nei proficient, and its wild-type counterpart (WP2) showed no 

significant accumulation of Sp with chromate treatment over that of the control. This 

result correlated well with our previous studies on in vitro Sp formation in Cr(VI)- 

oxidized DNA and suggests that the Nei BER enzyme is the primary glycosylase that 

recognizes Sp in bacterial DNA.

2.5 W P2 0 uM

oo<x>
a*ocn
i_O</>

W P2 100 (iM Cr(VI) 
W P2 250 pM Cr(VI) 
CM1319 0 pM 
CM1319 100 pM Cr(VI) 
CM1319 250 pM Cr(VI) 
CM1307 0 mM 
CM1307 100 pM Cr(VI) 
CM1307 250 pM Cr(VI)

i

Time (hrs)

Figure 4.4: Growth inhibition of the MutM" (CM1319) and MutY" (CM1307) 
single mutants with their corresponding wild type (WP2) with increasing chromate 
treatment. Growth inhibition for the wild type is shown in red symbols, and the 
MutM- and MutY- mutants are shown with identical symbols as the wild type but in 
blue and green colors respectively.
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Figure 4.5: Growth inhibition of the MutMTMutY- double mutant (CM 1322) and 
its corresponding wild type (WP2) with increasing chromate treatment. Growth 
inhibition data for the wild type are represented by the red symbols and the mutant 
with the identical symbols but in blue for each chromium concentration. The error 
bars represent the standard deviation of three replicates.
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Figure 4.6: Growth inhibition of the Nei” mutant (TK3D11) and its corresponding 
wild type (CSR06) with increasing chromate treatment. Growth inhibition data for 
the wild type are represented by the red symbols and the mutant with the identical 
symbols but in blue for each chromium concentration. The error bars represent the 
standard deviation of three replicates.
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The toxicity of chromate in these high-density cell cultures (OD600 = 0.5) was 

assessed by a plating assay as growth curves cannot be conducted on high-density 

cultures. At the 250 pM concentration of chromate, no overt toxicity was observed for 

any of the cell lines in the plating assay (Figure 4.8). At the 500 pM chromate treatment 

the Nei deficient (TK3D11) cell line showed an 18% survival rate vs 40% for its matched 

wild type (CSR06) in the plating assay. The MutMTMutY- double mutant (CM 1322) 

displayed a 35% survival in the plating assay with its matched wild type (WP2) showing 

43% survival at the 500 pM chromate treatment.

8000

7000

6000

■ 1K3D11
BCSRQ6 
H CM 1322 
OWP2

0 pM Cr(VI) 250 pM Cl(Vl) 500 pM Cr(Vf)

Figure 4.7: Formation of Sp in chromate-treated E. coli. The Nei deficient 
(TK3D11) E. coli show a dose dependence for Sp formation with an increasing 
chromate concentration. The data are normalized on a per million dG basis, and 
each data point is a minimum of n = 5 replicates. Figure from: Hailer, M.K., Slade, 
P.G., Martin, B.D. and Sugden, K.D. (2005) Chem. Res. Toxicol. 18, 1378-1383.
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Bacterial Survival Plating Assay

Cr(VI) (pM)

■ CRS06
■ TK3D11
□ WP2
□ CM 1322

Figure 4.8: Plating assay to determine the toxicity of chromate in high-density cell 
cultures (OD600 = 0.5). Percent survival when exposed to increasing levels of 
chromate was determined in two repair deficient strains (TK3D11 and CM 1322) and 
compared to their respective wild-type strains (CRS06 and WP2). The samples were 
normalized and the error bars represent the standard deviation of three replicates.

HPLC-ECD Analysis for the 8-oxoG Lesion in the Genomic DNA of BER 

Deficient E. coli. Enzymatically digested genomic DNA from the different E. coli strains 

were also analyzed for 8-oxoG 19 using HPLC coupled with electrochemical detection 

(HPLC-ECD). 8-oxoG is the putative intermediate of Sp formation and is primarily 

removed from genomic DNA by the MutM (Fpg) and MutY BER enzymes.20 Figure 4.9 

shows that the MutM/MutY proficient bacterial cell lines, TK3D11, CSR06, and WP2 all 

gave typical levels of 8-oxoG (typical background levels for 8-oxoG have been 

established by the ESCODD to be 0.3-4.2 8-oxoG/106 dG ;21) even at the highest 

concentration of chromate used (500 pM). Not surprisingly, the MutMTMutY” double
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mutant (CM1322) was the only cell line studied that showed accumulation of 8-oxoG in 

its genomic DNA following chromate treatment. The amount of 8-oxoG accumulation, 

however, was modest in the MutMTMutY” double mutant with respect to the level of Sp 

accumulated in the Nei deficient cell line and was not differentially toxic to the cell by 

either a plating assay or growth curves.

8
CD

j

0 pM Cr(V!) 2§0 pM Cr(VI) §00 pM Cr(VI}

Figure 4.9: Formation of 8-oxoG in chromate-treated wild-type and BER deficient 
E. coli genomic DNA. Each data point is normalized on a per million dG basis and 
has a minimum of n = 3 replicates. Figure from: Hailer, M.K., Slade, P.G., Martin, 
B.D. and Sugden, K.D. (2005) Chem. Res. Toxicol. 18, 1378-1383.
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4.5 Discussion and Conclusions

The reaction of Cr(VI) with a 10-fold excess of ascorbate resulted in guanine- 

specific oxidation in a duplex DNA oligonucleotide. The products of this oxidation 

reaction were determined using BER-specific lesion trapping. These results were further 

verified by other members of the lab by HPLC-ECD and HPLC-ESI-MS. BER trapping 

with hOGGl showed little or no formation of 8-oxoG, which correlated with the low 

levels of 8-oxoG subsequently identified using the sensitive HPLC-ECD method. BER 

trapping was observed with the NEIL2 glycoylase, which showed a dose-dependence of 

trapping with Cr(VI)/Asc treatment. NEIL2 recognizes the Sp lesion in duplex DNA, 

and the formation of Sp was further verified and quantified using HPLC-ESI-MS by 

other lab members. The levels of Sp generated in the Cr(VI)/Asc system was 

approximately 20 times greater than that of 8-oxoG. These findings suggest that the Sp 

lesion may be a common lesion in DNA oxidation and could play a significant role in the 

initiation of cancer by carcinogenic Cr(VI) compounds. The formation of Sp directly 

from guanine in DNA has previously only been observed for carbonate radical anions.3 

To our knowledge, this study is the first example of Sp formation arising discretely from 

guanine in duplex DNA from reaction with a known carcinogenic metal.

The mechanism of Sp formation directly from guanine is a four-electron process

00with Sp being the terminal product that predominates at pH 7 or greater. 8-oxoG is the 

two electron intermediate in this oxidation process, which is further oxidized to the 5- 

hydroxy-8-oxoguanine species, 5-OH-8-oxoG, and ultimately Sp. Figure 4.10 shows the 

putative reaction scheme for the formation of Sp from guanine with sequential one- 

electron oxidation by Cr(IV). The reduction of Cr(VI) with a 10-fold molar excess of
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ascorbate has been observed to initially form a transient Cr(IV) species and the oxidized 

form of ascorbate, dehydroascorbate (DHA) 23, followed by a second reduction reaction

of Cr(IV) with Asc to give rise to the ascorbyl radical, Asc ", and a kinetically inert

Cr(III) species as shown in equations 1 and 2 below:

Cr(VI) + Asc -> Cr(IV) + DHA (1)

Cr(IV) + Asc -> Cr(III) + Asc (2)

A second terminal product of this guanine oxidation pathway, guanidinohydantoin (Gh), 

may also be formed during this oxidation reaction. However, this product is generally 

formed under more acidic conditions, while this study was carried out at neutral pH .22 It 

is important to note that the oxidation process used in this study shows, for the first time, 

guanine-specific products caused by the direct oxidation of unmodified dsDNA by 

Cr(VI) without the introduction of exogenous H2O2.

A number of studies on the reaction of Cr(VI) with DNA have shown a bias 

toward reaction with guanine.24 These results have often been interpreted as the 

formation of chromium adducts with guanine through a phosphodiester backbone-ligand 

intermediate.25 However, no adduct of chromium with the guanine base has ever been 

discretely identified. We suggest that guanine-specific reactions in DNA give rise 

primarily to further -oxidized lesions such as Sp, although formation of these ternary 

adducts cannot be ruled out in our system.

Sp is known to be considerably more piperidine labile than 8-oxoG and has

26shown the ability to induce high levels of arrest in polymerase processing. The 

enhancement in cleavage that we have observed in guanines that are 5’ in a run of purines 

also supports this oxidative mechanism. We postulate that many of the effects of Cr(VI)
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treatment observed in cellular systems may be adequately explained by the formation of 

these further oxidized lesions.

NH2

Guanine, G 8-oxoG

e-

acylshift

t

f+ NH

n"S#>X'NH2

5-OH-8*oxoG 8-oxoG ,+

Figure 4.10: General reaction mechanism proposed for the formation of Sp from 
guanine.

The primary focus of this study was to identify and quantify the formation of the 

further-oxidized guanine lesions, spiroiminodihydantoin (Sp), arising from oxidation of 

guanine in unmodified duplex DNA. Clearly, the formation of these further oxidized 

lesions from oxidative attack on guanine in DNA instead of in an 8-oxoG modified DNA 

strand was necessary to establish their potential relevance in biological systems. To 

identify these lesions as arising in unmodified DNA from Cr(VI) oxidation, we exploited 

the specific affinity of trapping by the base excision repair enzymes NEIL1 and NEIL2 

and have further unambiguously identified their formation using HPLC-ESI-MS. The
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NEIL family of genes (Nei-like) have only recently been identified, and their affinities 

for oxidatively damaged bases are still being defined. As described in chapter 3 of this 

thesis, NEIL1 and NEIL2 were shown to have high affinities for the further oxidized 

guanine lesions Sp and Gh but little or no affinity for 8-oxoG in duplex DNA. When Sp 

formation was compared with 8-oxoG in this study, the prevalence of the glycosylase 

recognition was specific for further-oxidized lesions and not 8-oxoG, suggesting that Sp 

was formed at significantly greater levels than 8-oxoG.

Growth inhibition in repair deficient strains of bacteria by a toxicant that exceeds 

that observed for the wild-type bacterial strain implies both reaction with DNA and a role 

for the repair gene in ameliorating its genotoxic effects. The reaction of chromate with 

DNA in cellular systems is thought to produce a number of different adducts including 

those derived from an oxidative pathway (strand breaks, abasic sites, 8-oxoG; 27~29) and 

those derived from a metal-binding pathway (DNA inter-strand cross-links and DNA- 

protein cross-links;30’31). Little is known about the exact nature of many of these adducts 

or their mechanism of repair. One recent study has shown that a human XP-A fibroblast 

cell line, deficient in nucleotide excision repair (NER), was sensitive to chromate.32 This 

chromate sensitivity in the XP-A fibroblasts was attributed to the formation of DNA 

cross-links arising from the metal-binding pathway.

Even though Cr(VI) is a known intracellular oxidant, no systematic analysis of the 

impact of Cr(VI) exposure on BER deficient bacterial strains had previously been 

undertaken. We studied the ability of BER deficient E. coli to grow in the presence of 

Cr(VI) since the formation of 8-oxoG has long been considered to be a relevant lesion 

induced by Cr(VI) in a variety of in vitro and cellular systems. If Cr(VI) exposure in E.
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coli generated 8-oxoG as a key genotoxic lesion, it would be expected that strains that are 

deficient in MutM (Fpg) and/or MutY would exhibit significant growth inhibition.

MutM recognizes and excises 8-oxoG opposite cytosine while MutY recognizes and 

excises adenine opposite 8-oxoG (adenine is the base that is most often misincorporated 

for cystosine opposite an 8-oxoG upon DNA replication).20 MutM recognizes Sp in 

duplex DNA when paired opposite cytosine, C, as a complementary base but shows little 

or no recognition of this lesion when paired opposite guanine, G, or adenine, A 12 (Figure 

4.11). In fact, it has been recently shown that a functional MutY repair enzyme
I -y

effectively eliminates MutM recognition of Sp opposite G. The BER enzyme, Nei, has 

shown the ability to recognize Sp in duplex DNA opposite C, G, and A with the greatest 

affinity for Sp opposite G 12 (Figure 4.11). Nei is also the only BER enzyme known to 

recognize Sp opposite A. This finding is of considerable significance since recent 

cellular mutation studies have suggested that G-> C transversion mutations, and to a 

lesser degree G -> T transversion mutations, predominate when Sp is formed in duplex 

DNA.6'9 Interestingly, these transversion mutations are the primary mutations observed 

in the lung tumors of chromate-exposed workers and in shuttle vector replication assays 

in Cr(VI)-treated mammalian cells.10,11 On the basis of these lesion specific mutation 

profiles, we propose that the formation of the Sp lesion is more consistent with known 

Cr(VI) mutation patterns than is the 8-oxoG lesion.
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Figure 4.11: Schematic representation of 8-oxoG (G°) and Sp formation and lesion 
repair by E. coli BER enzymes in genomic DNA. The recognition specific enzyme 
initiating each repair sequence is indicated above each pathway.

DNA repair studies in E. coli are generally considered significant to humans due 

to the homology and substrate overlap between the E. coli and mammalian BER 

enzymes. Recently, NEIL BER genes were found in both the human and the mouse 

genome. These genes have been designated as NEIL1, NEIL2, and NEIL3. The 

mammalian NEIL genes are homologous to E. coli Nei and Fpg, and we have 

hypothesized that they play a fundamental role in repair of chromium-damaged DNA.

The formation of Sp in DNA in vitro has been observed in a wide variety of 

oxidizing systems including reactions with chromium. The identification and 

quantification of the Sp lesion in cellular systems have been complicated by it refractory 

nature toward enzymatic digestion and the polarity of the resulting nucleoside that makes 

it difficult to separate by HPLC. At the highest dose of chromate used in this study, 500 

pM, an approximate 20-fold increase in Sp formation was observed for the Nei deficient
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E. coli over its matched wild-type control. In this study, the chromate was added to E. 

coli in the logarithmic growth phase. We hypothesize that these quickly replicating cells 

accumulated Sp opposite the misincorporated bases guanine and adenine, conditions 

under which Nei has been shown to play the major role in repair. The failure of the Nei 

deficient cell line to accumulate even modest amounts of 8-oxoG, while accumulating 

large quantities of Sp, indicates that chromate oxidation of 8-oxoG effectively and 

efficiently out-competes the proficient MutM and MutY repair systems in this cell line. 

This is not unexpected since 8-oxoG is kinetically and thermodynamically prone to 

oxidation to Sp. In fact, our group has previously shown that chromium preferentially 

oxidized 8-oxoG in DNA over any other nucleic acid base, including guanine. These 

results suggest, however, the additional possibility that chromate forms Sp within 

genomic DNA directly without going through an 8-oxoG intermediate. While there has 

not been an established mechanistic route for such an oxidative event with chromate, our 

current results cannot rule out this possibility.

Lesion formation in the MutMTMutY" double mutant, which has a functional Nei 

BER gene, can remove the Sp lesion from the genomic DNA pool, resulting in no 

accumulation of Sp and thus no sensitivity toward chromate. However, the lack of the 

MutM and MutY BER glycosylases in this strain explains the observed accumulation of 

8-oxoG within the genomic DNA.

In conclusion, the deletion of the Nei BER enzyme in E. coli results in a 

differential sensitivity of this cell line toward chromate. The high level of Sp measured 

in the genomic DNA of this strain almost certainly contributes to the chromate sensitivity 

of these cells. On the basis of human mutation data and BER homologies between
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humans and bacteria, these data suggest that the Sp lesion may play a major role in 

chromate-induced lung tumors.

4.6 Experimental Procedures

4.6.1 In vitro Formation and Detection of Oxidized Guanine Lesions

Deoxyribonucleotides. Oligonucleotides used in this study were purchased from 

Integrated DNA Technologies or Trilink Biotechnologies. The oligonucleotide 

sequences were d(5’-AGTTGAGXGGACTTTCCCAGCC-3’), where X denotes G or 8- 

oxoG, and its complement d(5’-GGCTGGGAAAGTCCCCTCAACT-3’). Purification of 

the oligonucleotides prior to use was accomplished by HPLC using a Dionex Nucleopac 

PA-100, 4 mm X 250 mm anion-exchange column employing a linear gradient from 90% 

mobile phase A (10% aqueous acetonitrile) and 10% mobile phase B (1.5 M ammonium 

acetate, pH 6.0, in 10% acetonitrile) to 100% mobile phase B over 31 min. Eluting 

oligonucleotides were monitored at 268 nm. The fraction containing the oligomer was 

eluted as a single peak. The collected samples were lyophilized and purified into 

deionized water using a Bio-Rad Micro Bio Spin 6 Column. Pure oligonucleotides were 

stored at -20 °C until needed.

DNA oxidation using Cr(VI) and ascorbate. Ascorbate (>99%) and sodium 

dichromate dihydrate were purchased from Sigma-Aldrich. Purified duplex DNA 

oligonucleotides (2.5 pM) were oxidized by the addition of a 10:1 molar ratio of 

ascorbate to Cr(VI) in PBS buffer (pH 7.0). Concentrations of Cr(VI) varied from 3.12 to 

50 pM with 31-500 pM ascorbate. Reactions were incubated for a minimum of 1 hr at 

which time UV-vis monitoring at 372 nm had shown complete reduction of Cr(VI) to
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Cr(III). The oxidized DNA was then purified into DI water using a Bio-Rad Micro Bio- 

Spin 6 column.

Analysis of site- and sequence-specific oxidation of DNA by Cr(VI) and 

ascorbate. Piperidine-labile cleavage sites on the DNA were analyzed by treating 

lyophilized samples of the Cr(VI)/Asc-oxidized DNA (2.5 pM) with 100 pL of a 1.0 M 

solution of freshly distilled piperidine followed by heating at 90 °C for 30 min. Samples 

were loaded on a 20%, 0.4 mm thickness, 21 cm X 50 cm denaturing (7M urea) 

polyacrylamide gel with 4 pL of 80% formamide loading buffer containing 0.05% xylene 

cyanol and bromophenol blue. Electrophoresis was carried out at 2200V and 24 mA with 

IX TBE as the running buffer. Visualization of the DNA cleavage products was carried 

out by autoradiography using Kodak X-Omat Ar-5 film.

Analysis of trapped Schiff base complexes of hOGGl and mNEIL2. The 

Cr(VI)/Asc-treated, 32P-labeled dsDNA (23 pM) was incubated with mNEIL2 or hOGGl 

(15 nM) in 60 pL of reaction buffer (20 mM Tris-Cl (pH 8.0), 1 mM EDTA, 1 mM DTT, 

and 100 pg/mL BSA) in the presence of 50 mM NaCNBH3 at 37 °C for 90 min. An 

amount of 25 pL of the trapped enzyme/DNA complex was removed, and the reaction 

was stopped by the addition of 5 pL of 6 X SDS loading buffer. Samples were heated to 

95 °C for 10 min and flash-cooled on ice. Samples were separated on an 8-12% stacking 

SDS-PAGE gel and visualized by autoradiography.

4.6.2 Treatment of E. coli Strains

Bacterial Strains. The strains WP2 and CM 1322 were generous gifts from Dr. 

Bryn Bridges and Dr. Andy Timms of MRC (University of Sussex, United Kingdom). 

WP2 is trpE65-(oc), lon-11, sulAl 33, CMI322 is as WP2 but mutY6 8 ::kanR, mutMr.TnlO
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(source P1(TT101 X CM 1307) (personal communication), CM 1319 is as WP2 but 

mutMr.TnlO,  CM1307 is as WP2 but mutY68::kanR, 3 4  TK3D11 (AkdpFABC-gltA) 219,

A(galK-bioD) 76, trkA405, trkDl, rha-4, thi-1 and its control strain CSR06 (thr-1, 

araC14, leuB6(Am), A(gpt-proA) 62, lacYl, tsx-33, glnV44(AS), phr-1, galK2(Oc), LAM- 

, Rac-O, hisG4(Oc), rfbCl, mgl-51, rpsL31 (strR), kdgKSl, xylAS, mtl-1, arg E3(Oc), thi- 

1, uvrA6) were obtained from the E. coli Genetic Stock Center at Yale University (New 

Haven, CT). The A kdpFABC-gltA encompasses the five genes of the Nei operon35, and 

TK3D11 is designated herein as Nei” in order to reflect the deletion of this operon.

Differential Growth of BER Deficient E. coli Following Chromate 

Treatment. Fourteen hour growth curves were conducted on the BER deficient strains 

of E. coli and their wild-type controls (WP2 for MutMTMutY” CM 1322 and CSR06 for 

the Nei” TK3D11). The E. coli strains were grown with either 0 (control), 100 or 250 

pM Cr(VI) over a time course of 14 hr in LB broth at 37 °C. Chromate, Cr(VI), as 

sodium dichromate (J.T. Baker Chem. Co., Phillipsburg, NJ) was added at an ODeooof

0.05, and measurements of cell density were taken every hour for 8 hr and then every 2 hr 

for the next 6 hours.

4.6.3 Detecting Sp Formation in an E. coli System

Extraction of Genomic DNA for Mass Spectral and Electrochemical Analysis 

of DNA Lesions. Cultures of CSR06, TK3D11, WP2, and CM 1322 were grown in 50 

mL of LB broth at 37 °C until they reached an OD600 of 0.5. Cell densities were 

normalized to ensure identical numbers of cells in each treatment. When an OD600 of 0.5 

was reached, Cr(VI) was added to the cell/LB mixture to give concentrations of 0, 250, 

and 500 p,M. Cells were allowed to grow for 3 hr after the addition of Cr(VI) and prior to
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harvesting. Cells were harvested and lysed using the Qiagen bacterial lysis buffer 

(Qiagen Inc., Valencia, CA), and genomic DNA was extracted using phenol/chloroform
■ i/r

as previously described.

HPLC-ESI-MS Analysis of Oxidized Duplex DNA. Hydrolyzed DNA samples 

were analyzed using a Waters 2790 HPLC coupled to a Micromass LCT mass 

spectrometer with electrospray ionization. Separations were performed using a C18 

reverse phase Microsorb MV 2.1 mm X 250 mm column, with a 0.5% aqueous 

acetonitrile/min gradient mobile phase and a flow rate of 0.4 mL/min. Mass spectral 

analysis was performed using selected ion monitoring (SIM) with a cone voltage of 30 V, 

a capillary voltage of 3000 V, a desolvation temperature of 250 °C, a source temperature 

of 150 °C, and an aperture of 15. Sp was identified and quantified through the

IS 1S 10introduction of the stable isotopic O internal standard of O described previously. A 

linear calibration curve was obtained using 1.0 nmol of 180-Sp as the internal standard

1 f \  9and variable amounts of O-Sp ranging from 0.01 to 1.0 nmol (slope = 1.0, r = 0.997). 

For the measurements of Sp in hydrolyzed DNA samples, the amount of lsO-Sp internal 

standard was chosen according to the limits of this standard curve. Levels of Sp in 

hydrolzyed DNA samples were expressed as the number of Sp per 106 dG.

HPLC-ECD Analysis of Genomic DNA from E. coli. HPLC-ECD 

identification of 8-oxoG was performed using a previously established method. Briefly, 

8-oxoG and dG in enzymatically digested DNA samples were separated by HPLC with a

4.6 mm X 150 mm reverse phase YMC basic column and quantified using a CoulArray 

electrochemical detection system (ESA Inc., Chelmsford, MA). Nucleosides were eluted 

from the column using an isocratic mobile phase of 100 mM sodium acetate, pH 5.2, in
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4% methanol. Potentials of the four coulometric analytical cells of the CoulArray system 

place in series were as follows: 50, 125, 175, 200, 250, 380, 500, 700, 785, 850, 890, and 

900 mV. Calibration curves were generated from a dG standard (0.1-2 pg) and an 8- 

oxoG standard (50-1000 pg). The amount of 8-oxoG was calculated by comparing the 

peak area from a 50 pL injection of enzymatic hydrolysate of the oxidized DNA sample 

with the calibration curve. Levels of 8-oxoG in the genomic DNA were expressed as the 

number of 8-oxoG per million dG.
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th
Appendix 1: Identifying Common Science Misconceptions in 5 Grade Science 

Classes at Lewis and Clark Elementary School 

A l.l  The ECOS Program

This appendix topic is presented in fulfillment of the funding requirements for the 

ECOS fellowship for the 2005-2006 school year. The ECOS program at the University 

of Montana is funded by the National Science Foundation. ECOS promotes hands-on 

science education in schoolyards and adjacent open areas in western Montana, and brings 

graduate researchers into K-12 county schools in Missoula, Montana. The purposes of 

this fellowship are two-fold. First, the fellowship gives graduate students the opportunity 

to develop teaching skills and curriculum writing expertise. Opportunities for true 

teaching and curriculum development are a rare occurrence in the science fields in 

graduate institutions, making this fellowship a golden opportunity for students who may 

want to pursue post-graduate teaching careers. The second purpose of the ECOS 

fellowship is to bring research from the University of Montana to the local school system. 

It is a hope that this program will inspire school age children to pursue degrees in 

science, and will also expose teachers to new ideas and techniques for classroom 

teaching. In this sense, both graduate students and K-12 teachers learn from each other. 

Graduate students may learn tried and true teaching techniques, and the teachers can learn 

ways to integrate cutting-edge research into their existing curriculum.

One of the requirements of the ECOS fellowship is to write a paper focusing on 

some aspect of these new skills learned as a “resident ecologist” in K-12 classrooms. As 

per the fellowship guidelines, this paper will be added to the thesis of the fellow. To
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fulfill this requirement, I chose to focus on science misconceptions in the three 5th grade 

classes at Lewis and Clark Elementary School, because as a potential educator it is 

important to understand the learning process and try to identify areas where students may 

be struggling to understand specific concepts or ideas. Once misconceptions are 

identified they can be addressed and hopefully changed to fit true scientific concepts. If 

misconceptions are not identified and addressed, they can easily persist until college or 

even well into adulthood when there would be little chance of ever changing the 

misconception into something more valid.

A1.2 Identifying Science Misconceptions

A misconception is defined as a mistaken thought, idea or notion; a 

misunderstanding.1 This idea of misconceptions is also known as an alternative concept 

or a naive concept.2 Students form misconceptions based on their experiences and what 

they see and hear. Misconceptions can come from a variety of factors and unfortunately, 

these interpretations have been shown to impede learning of fundamental scientific 

concepts. Students develop misconceptions as mechanisms for understanding 

phenomena in the world around them, and the sources for acquiring this information are 

often not science-based. In addition to this, misconceptions can even arise from incorrect 

teaching in school, especially when the concepts are never challenged again and persist 

into adulthood. A students’ prior knowledge can be used as a building block for 

acquiring new knowledge, when this information is correct. When the information is 

incorrect however, prior knowledge interferes with a student’s ability to process new 

science concepts.2
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In order to correct science misconceptions, these concepts need to first be 

identified so that the students can replace them with new information. Several studies 

have shown that it can be difficult to convince a student to give up a long held 

misconception3 unless the new concepts “are more valid, more powerful, more useful, or 

in some other way preferable to their existing concepts.”4 One way to identify and 

correct misconceptions is to assess the students’ prior knowledge, keeping in mind that 

giving the student the “correct” information will not necessarily cause them to abandon 

their misconceptions and adopt this new information.

The most predominant and accepted model for instruction in the U.S. school 

system is lecture based, which is founded on the assumption that knowledge can be 

transferred intact from the mind of the teacher to the mind of the learner. This lecture 

method of teaching is another way that misconceptions can form. As educators, teachers 

must be aware that teaching and learning are not synonymous; we can “teach” without 

having the students “learn”. This realization is based on the Constructivist Learning 

Theory5 which states that knowledge is constructed in the mind of the learner and 

misconceptions play a role in this process of acquiring knowledge. Many misconceptions 

encountered in science are no more than a reflection of poorly differentiated concepts that 

have developed naturally. Students often hold the correct concept but have not applied it 

properly to problems in the classroom and the real world. This is where identification 

and hands on application can be used to change the misconception into a valid and 

working concept.
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A 1.3 ECOS Experiences from a 5th Grade Classroom

The ECOS program is designed to bring a hands-on approach to understanding 

science. One of the goals of the ECOS program was to develop curricula pertaining to 

ecological science topics in a very hands-on, inquiry-based format. These curricula were 

developed to provide background information to the students on a particular topic; 

students then determined the “answers” to questions presented in the activity. In this 

sense, students were allowed to make initial hypotheses or guesses and then work their 

way through the activity to come to some sort of a conclusion. Generally, there was a 

concluding session to help students solidify their observations into answers. The goal of 

the ECOS program was never to identify and alleviate science misconceptions, but 

working with these students during the year did provide the opportunity to identify some 

misconceptions that were prevalent in the 5th grade science classrooms.

To identify some misconceptions that exist amongst the 5th graders at Lewis and 

Clark Elementary, students were given a worksheet (Figure A.l) with several questions 

on topics that have been identified previously as areas where misconceptions are known

f t  7to exist. ’ The questions were set up as either true/false or multiple choice. The students 

were told that they would not be graded on the worksheet in hopes that this would 

alleviate any stress they might feel about getting the “correct” answer. This worksheet 

was given to not only the two ECOS classes that we had worked with all year, but it was 

also given to a non-ECOS class of 5th graders with whom we had not interacted with at 

all during the year.
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Science Trivia Ouestions
Check yes or no, or circle the correct answer

1. If you drop a 1 pound weight and a 10 pound at the same time from the same 
height, the 10 pound weight will hit the ground first.

□ Yes □ No

2. It is warmer during the summer in North America because the Earth is closer to 
the Sun.

□ Yes □ No

3. The moon increases and decreases in size throughout the month. 
□ Yes □ No

4. Plants get food from:
a.) fertilizer
b.) the ground water
c.) making their own food internally
d.) absorbing it from the soil via the roots

5. Plants, fungi, eggs and seeds are not living. 
□ Yes □ No

6. What are the bubbles in boiling water composed of?
a.) air
b.) water vapor
c.) oxygen
d.) nothing

7. We can see objects because:
a.) light reflects off the object and our eyes focus the reflecting light.
b.) they are bathed in light.
c.) light travels from our eyes to the object.
d.) light travels faster at night.

8. Whales, jellyfish, and starfish are all fish. 
□ Yes □ No

9. A species high on the food web is a predator to everything below it. 
□ Yes □ No

10. Air and oxygen are the same gas. 
□ Yes □ No

Figure A .l: Worksheet given to 5th grade students at Lewis and Clark to determine 
common misconceptions.
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The goal of this worksheet was two-fold. First, the worksheet was given out to 

hopefully determine any misconceptions that are commonly held among the 5th grade 

classrooms at Lewis and Clark Elementary School. Identifying misconceptions is the 

first step in changing a misconception into a valid concept. The hope would be to give 

this information to the teachers so they could potentially work to identify and alleviate 

some of these misconceptions in upcoming 5th grade science classes. The second goal 

was a very qualitative goal. We had intentionally added misconception questions based 

on topics that we had specifically worked on with the two ECOS classes (questions 4,

6,and 7; Fig. A .l) while others concerned areas that we had not discussed. Again, when 

these topics were presented early in the year, the goal was not to change an existing 

misconception, and misconceptions had not previously been identified in these 

classrooms. Although the science trivia quiz is structured such that a positive response 

indicates that the student had the misconception and a negative response indicates the 

correct answer, we felt that the high prevalence of misconceptions would negate any 

effect of consistency in the answers.

A1.4 Results of the Misconception Worksheet

The first question on our misconception worksheet concerned gravity, and the 

false idea that a heavier object will fall faster than a lighter object of the same size. This 

misconception was just as common among both study groups (approximately 35% of all 

students). Little difference existed among ECOS and non-ECOS student responses to the 

misconception regarding the idea that the seasons occur because of earth’s changing 

distance from the sun, rather than its tilt. This idea again was relatively common, as 27% 

of the students identified this as a true statement. The third misconception, that the moon

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

changes size over the course of the month, also did not produce a different proportion of 

student responses between the two study groups. Nearly 50% of both ECOS and non- 

ECOS students believed this to be true. However, upon further examination, we realized 

that the wording of the question is poor and most likely caused confusion amongst the 

students, as they may have thought that we were referring to the appearance of the moon 

rather than its actual shape.

The fourth common misconception, a multiple choice question about plant food 

sources, did show different responses between our study groups. The non-ECOS students 

responded equally to the three incorrect statements, which identified fertilizer, ground 

water, and soil as the primary food source of a plant. However, only one non-ECOS 

student correctly identified the true source (internal), while the vast majority of ECOS 

students selected the correct answer (Figure A.2). The next misconception included on 

our worksheet was the idea that plants, eggs, and seeds are non-living. Very few of the 

students surveyed in either group believed this to be true. ECOS students again had a 

greater proportion of correct responses to the next multiple choice question, which asked 

for the composition of the bubbles in boiling water. Most of the non-ECOS students 

incorrectly believed that the bubbles are made of air, while the majority of ECOS 

students knew that they are made of water vapor (Figure A.3).

Both study groups performed equally well on the question testing for the 

misconception that we see objects because they are bathed in light or because light travels 

from our eyes to the object. A substantial proportion of students, approximately 30% of 

both groups, did not understand that light reflects off an object and our eyes focus the 

reflecting light. In addition, 19% of ECOS and non-ECOS students believed that whales,
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jellyfish, and starfish are all fish. Again, there was little to no difference in responses 

between the two groups. One question for which the non-ECOS students had a greater 

proportion of correct answers than ECOS students regarded the idea that a species high 

on the food web is a predator to everything below it. 45% of non-ECOS students 

correctly identified this idea as false, while only 33% of the ECOS students answered 

false. Lastly, the students were asked whether air and oxygen were the same gas. As 

with several of the other questions, ECOS students and non-ECOS students responded 

similarly: approximately 50% of the students in both groups believed this to be true.
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Student Responses: Where do plants get food from?
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Figure A1.2: Graphical representation of the responses to multiple choice question 
number 4 of the misconception worksheet. This question asked students to identify 
where plants produce their food from and the available answers are shown below each 
bar set. Responses were normalized and ECOS student responses are shown in green 
and non-ECOS student responses are shown in blue.
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Student Responses: What are the bubbles in boiling water
composed of?

Air Water vapor Oxygen

Choices Provided

Nothing

ECOS Students ■ Non-ECOS Students

Figure A 1.3: Graphical representation of the responses to multiple choice question 
number 6 of the misconception worksheet. This question asked students to identify 
what the bubbles in boiling water are composed of and the available answers are 
shown below each bar set. Responses were normalized and ECOS student responses 
are shown in green and non-ECOS student responses are shown in blue.

A1.5 Discussion

The results from our misconception worksheet indicate that the majority of 

students at Lewis and Clark Elementary School hold a variety of scientific 

misconceptions. These misconceptions could exist for a variety of reasons. For instance, 

some of the topics on the worksheet may be areas of study that they have never been 

exposed to, or may be topics they have learned about from non-traditional teaching 

sources (e.g. museum, TV program, parent or friend, etc.). The worksheet did not
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identify how the students came to the answer that they indicated. However, while this 

misconception worksheet does not identify reasons behind the misconception, it does 

prove that misconceptions exist among the 5th graders tested. This worksheet also 

indicates areas of study that could be further evaluated to help change the misconceptions 

that these students hold.

The misconceptions identified are similar in all three classes signifying that all the 

students are roughly at the same educational level and have been exposed to similar 

topics. However, from our worksheet, we are able to see that in two of the three areas for 

which we specifically developed lessons, there are significant differences between ECOS 

and non-ECOS classes. During the school year, we introduced a variety of curriculum 

pieces oriented towards understanding plants. The awareness that plants need a variety of 

factors from the environment to live but actually make their food internally was identified 

to a much higher extent by ECOS students than by the non-ECOS students (Figure A.2). 

In addition, curriculum pieces were also designed to specifically illustrate the phases of 

matter, and water was used as a specific example several times. When asked what the 

bubbles are composed of in boiling water, the majority of ECOS students answered 

correctly. This was not the case in the responses from the non-ECOS students (Figure 

A.3).

In contrast to the first two questions, the third curriculum piece that was 

developed did not yield similar results. This curriculum piece pertained to light. The 

students in the ECOS classes were able to work through an experiment on light and were 

given some information on how our eyes perceive light and color, yet these students did 

not answer the light question correctly (question #7) any more so than the non-ECOS
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students. This could be interpreted as an instance in which introducing students to a 

particular concept caused more misconceptions than actually creating knowledge and 

valid concepts in the minds of students. This is something that both the ECOS fellows 

and teachers should be aware. Students can regularly be assessed to determine whether 

knowledge is being organized into valid concepts or misconceptions, and if confusion 

still exists with a particular topic more time can be spent to alleviate this confusion.

If students are taught a concept correctly, why are misconceptions so resistant to 

change through instruction? One explanation is that each of us constructs knowledge that 

“fits” our experiences. Once we have constructed this knowledge, simply being told that 

we are wrong is not enough to make us change our (mis)concepts.8 The only way to get 

rid of an old theory is to construct a new theory that does a better job of explaining the

o

experimental evidence or finds a more appropriate set of experimental facts to explain. 

We as educators must design lessons that clarify and direct students into different and 

more valid thought patterns.

Following some of the ideas put forth in the constructivist model of knowledge 

there are important implications for the way students are taught. Social knowledge such 

as the days of the week can be taught by direct instruction. It can even be argued that this 

is the only way that children can learn social conventions.9 However, physical and 

logical knowledge cannot be transferred from the mind of the teacher to the mind of the 

learner. Following this idea would cause a shift in the classroom from someone who 

“teaches” to someone who tries to facilitate learning; a shift from teaching by imposition 

to teaching by negotiation.10
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The goal of the ECOS program has been to loosely follow this way of teaching by 

negotiation. The curriculum that was developed for Lewis and Clark Elementary was 

designed to allow students to discover ideas and concepts and come to original 

conclusions. We worked to develop these concepts with the students so that their 

conclusions would be based upon valid observations. However, we did not specifically 

work to change any preconceived notions or misconceptions. Our goal was to design the 

lessons in such a way that the correct or valid conclusion would be the most obvious and 

make the most real world sense. Again, we have no true assessments that might indicate 

that our goals were reached other than conversations with our students at the end of each 

lesson and discussions on conclusions presented to us from the class.

A1.6 Future Directions

While the idea of identifying science misconceptions is incredibly important, it is 

equally important to test for those misconceptions in the proper way. In order to 

correctly determine the naive concepts held by the students, they should be first pre­

tested with a very sound worksheet or test. Our worksheet falls short of this goal, but 

with some revision would work well. For instance, question number 3 is very poorly 

written and most likely caused a great amount of confusion amongst the students. In 

addition to this, the worksheet should have been thoroughly reviewed by the 5th grade 

teachers at Lewis and Clark. With their advice, only questions with which students have 

had significant experience would have been included on the misconceptions worksheet.

Once a number of misconceptions have been identified, new lessons will need to 

be developed to convince the students that there is a more valid way of understanding and 

using a particular concept. This is where the next group of ECOS fellows could make a
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significant impact. Once the misconceptions are identified, the fellows could work to 

change the misconceptions into more valid concepts through different hands-on 

experimental activities. Providing a hands-on activity allows the student to experiment 

with different “real-world” variables that would hopefully allow the student to re­

evaluate his or her current (mis)concept. In addition to providing hands-on lessons, 

fellows should have the students describe their thought process and how they have 

determined a new way of thinking about a concept (or why they believe their current 

concept is still valid). At the end of the year, students could again be tested to see if their 

misconceptions have changed into working concepts.

Misconceptions are prevalent in all age groups of students, and if unidentified, 

these misconceptions can persist well into adulthood. The ECOS program provides the 

prefect platform to identify and work to change naive concepts into valid working 

concepts. This study should certainly be continued during the 2006/2007 school year. 

Not only could valuable thinking skills be taught today’s youth, but new ways of 

accurately teaching concepts could be developed and implemented in the school 

curricula.
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